Identification of 3'-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients

Chaudhuri, Tanusree and Chintalapati, Janaki and Hosur, Madhusoodan Vijayacharya (2021) Identification of 3'-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients. PLOS One, 16 (6). e0252475.

[img] Text
2021-PlosOne-Hosur.pdf - Published Version

Download (2MB)
Abstract: genetic influence in epilepsy, characterized by unprovoked and recurrent seizures, is through variants in genes critical to brain development and function. We have carried out variant calling in Mesial Temporal Lobe Epilepsy (MTLE) patients by mapping the RNA-Seq data available at SRA, NCBI, USA onto human genome assembly hg-19. We have identified 1,75,641 SNVs in patient samples. These SNVs are distributed over 14700 genes of which 655 are already known to be associated with epilepsy. Large number of variants occur in the 3'-UTR, which is one of the regions involved in the regulation of protein translation through binding of miRNAs and RNA-binding proteins (RBP). We have focused on studying the structure-function relationship of the 3'-UTR SNVs that are common to at-least 10 of the 35 patient samples. For the first time we find SNVs exclusively in the 3'-UTR of FGF12, FAR1, NAPB, SLC1A3, SLC12A6, GRIN2A, CACNB4 and FBXO28 genes. Structural modelling reveals that the variant 3'-UTR segments possess altered secondary and tertiary structures which could affect mRNA stability and binding of RBPs to form proper ribonucleoprotein (RNP) complexes. Secondly, these SNVs have either created or destroyed miRNA-binding sites, and molecular modeling reveals that, where binding sites are created, the additional miRNAs bind strongly to 3'-UTR of only variant mRNAs. These two factors affect protein production thereby creating an imbalance in the amounts of select proteins in the cell. We suggest that in the absence of missense and nonsense variants, protein-activity imbalances associated with MTLE patients can be caused through 3'-UTR variants in relevant genes by the mechanisms mentioned above. 3'-UTR SNV has already been identified as causative variant in the neurological disorder, Tourette syndrome. Inhibition of these miRNA-mRNA bindings could be a novel way of treating drug-resistant MTLE patients. We also suggest that joint occurrence of these SNVs could serve as markers for MTLE. We find, in the present study, SNV-mediated destruction of miRNA binding site in the 3'-UTR of the gene encoding glutamate receptor subunit, and, interestingly, overexpression of one of this receptor subunit is also associated with Febrile Seizures.
Item Type: Journal Paper
Subjects: School of Natural and Engineering Sciences > Projects
Date Deposited: 01 Aug 2022 09:05
Last Modified: 01 Aug 2022 09:05
Official URL:
Related URLs:
    Funders: Office of the Principal Scientific Advisor (PSA), Govt. of India
    Projects: Advanced Epilepsy research-AER
    DOI: 10.1371/journal.pone.0252475

    Actions (login required)

    View Item View Item