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Abstract

The genetic influence in epilepsy, characterized by unprovoked and recurrent seizures, is

through variants in genes critical to brain development and function. We have carried out

variant calling in Mesial Temporal Lobe Epilepsy (MTLE) patients by mapping the RNA-Seq

data available at SRA, NCBI, USA onto human genome assembly hg-19. We have identified

1,75,641 SNVs in patient samples. These SNVs are distributed over 14700 genes of which

655 are already known to be associated with epilepsy. Large number of variants occur in the

3’-UTR, which is one of the regions involved in the regulation of protein translation through

binding of miRNAs and RNA-binding proteins (RBP). We have focused on studying the

structure-function relationship of the 3’-UTR SNVs that are common to at-least 10 of the 35

patient samples. For the first time we find SNVs exclusively in the 3’-UTR of FGF12, FAR1,

NAPB, SLC1A3, SLC12A6, GRIN2A, CACNB4 and FBXO28 genes. Structural modelling

reveals that the variant 3’-UTR segments possess altered secondary and tertiary structures

which could affect mRNA stability and binding of RBPs to form proper ribonucleoprotein

(RNP) complexes. Secondly, these SNVs have either created or destroyed miRNA-binding

sites, and molecular modeling reveals that, where binding sites are created, the additional

miRNAs bind strongly to 3’-UTR of only variant mRNAs. These two factors affect protein

production thereby creating an imbalance in the amounts of select proteins in the cell. We

suggest that in the absence of missense and nonsense variants, protein-activity imbalances

associated with MTLE patients can be caused through 3’-UTR variants in relevant genes by

the mechanisms mentioned above. 3’-UTR SNV has already been identified as causative

variant in the neurological disorder, Tourette syndrome. Inhibition of these miRNA-mRNA

bindings could be a novel way of treating drug-resistant MTLE patients. We also suggest

that joint occurrence of these SNVs could serve as markers for MTLE. We find, in the pres-

ent study, SNV-mediated destruction of miRNA binding site in the 3’-UTR of the gene

encoding glutamate receptor subunit, and, interestingly, overexpression of one of this recep-

tor subunit is also associated with Febrile Seizures.
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Introduction

Epilepsy is amongst the most common neurological disorders, affecting up to 1% of the popu-

lation of all ages [1]. Epilepsy is characterised by recurrent unprovoked seizures, and people

with epilepsy have a 1.6- to 11.4-times greater mortality rate than the normal population.

Though epilepsy can have both genetic and acquired causes, in about 60% of cases, the cause is

not known [2–4]. The genetic factors are the variations that can occur in both coding and

non-coding regions of the genes. The number of genes associated with epilepsy is continuously

rising, and presently more than 900 genes are known [5,6]. The target gene luciferase assay

(reporting gene technology), developed only recently, reveals that variants in the non-coding

regions significantly influence epilepsy and other neurological disorders [7–10]. In a compara-

tive study of 237 ion channel genes from neurologically normal individuals (n = 139) and idio-

pathic generalized epilepsy patients (n = 152) [11], 1.4% SNVs were found in the 3’-UTR

regions. It is suggested that excess suppression of target mRNAs by miRNA binding in the 3’-

UTR region disturbs the balance between neuronal excitation and neuronal inhibition thereby

leading to epileptic seizures [12].

We report here identification of genomic variants through a comparative analysis of the

RNA-seq data from 35 MTLE patient and three unrelated healthy individuals’ samples. We

also report the structural and functional consequences of a chosen few variants in the 3’-UTR

regions. We find the large number of SNVs (175641) distributed over 14700 genes of which

12333 are in the 655 genes already known, by earlier experimental data, to be related to epi-

lepsy. The analysis identifies 33729 SNVs in the 3’-UTR region, and 2542 of these belong to

498 of the set of 655 epilepsy-related genes. Mechanisms of association with epilepsy of the

remaining SNVs should be probed experimentally. SNVs in the 3’-UTR region have led to

only creation of miRNA binding sites, and hence mRNA-translation repression, in the follow-

ing genes: FGF12, FAR1, NAPB, HECW2, NRG3, SLC1A3 and SLC12A6. On the other hand,

loss of miRNA binding sites and hence de-repression of translation is predicted in the follow-

ing genes: MMADHC, FBXO28, GRIN2A, CACNB4, TDP2, ABHD12, RBPJ and PCMT1.

Molecular modelling reveals that the SNV has significantly affected the three-dimensional

structure of the 71-residue 3’-UTR segment thereby disturbing formation of proper translation

complex. Molecular modelling also reveals that the binding of miRNAs to 3’-UTR are

strengthened by the SNV leading to greater translation repression. These results suggest that,

even in the absence of missense variants that affect functionality of the protein, 3’-UTR SNVs

can disturb protein balance leading to development of epileptic conditions [13]. Our study

also points to the general possibility that combinations of independent variants in regulatory

regions of different genes can be markers for epilepsy. We find a probable linkage between

Febrile seizures and MTLE through genetic signals for over-expression of glutamate receptor

subunits in both.

Results

The SRA Ids of the RNA-Seq data and statistics of mapping to hg-19 are given in S1 Table.

As may be seen, more than 90% of paired reads from each sample are mapped onto hg-19.

Distribution of the variants common to mapping separately by Bowtie2 and BWE is shown in

Fig 1 as a function of number of samples in which a given variant is occurring.

There is a total of 1,75,641 SNVs occurring in 14700 genes when a DP (depth of read) cut-

off of 100 is used to accept a variant as genuine. Of these, 12333 SNVs are present in the 655

genes that are already known to be associated with epilepsy. The relevance of remaining SNVs

to epilepsy should be explored experimentally. The distribution of variants (SNVs) into five

categories of missense variants, 3’-UTR variants, 5’-UTR variants, intronic variants and other
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variants, is given in Table 1. The category ’other’ contains downstream as well as synonymous

and remaining variant types, depending on their position on the genome. There are 210 mis-

sense variants distributed over 121 epilepsy-associated genes, while the corresponding num-

bers for 3’-UTR variants are 2542 and 498 respectively (Table 1). The names of the genes

carrying these regulatory 5’-UTR SNVs and 3’-UTR SNVs are listed in S2 Table.

In S2 Table we have highlighted those genes which are targets of miRNAs that are found to

be overexpressed in MTLE patients with Hippocampal Sclerosis (HS) [14]. From among the

total 3’-UTR SNVs, we have selected for further analysis those SNVs which are present in ten

or more of the 35 patient samples. We find that SNVs in the 3’-UTR regions have created

miRNA binding sites in 18 genes and destroyed them in 19 genes, and these genes are listed in

Table 2. The total number of binding sites created is 51 while the total number of binding sites

lost is 69 (Table 2). Information about the degree of relatedness to epilepsy of each affected

gene, as classified by Wang et al [13], is also given in Table 2. For some of the genes, there is

both a loss and gain in miRNA binding sites (Table 2), and these genes have not been analysed

further here.

The following genes have only gained in miRNA binding sites due to the SNV: FGF12,

FAR1, NAPB, SLC1A3, HECW2, and SLC12A6. Figure pairs in Fig 2A–2F show comparisons

of predicted secondary structures for the native (left) and variant (right) mRNA segment of

length 71 residues containing the SNV, for each of these genes. In all mRNA segments chosen,

the SNV is located at position 36 in the sequence.

In FGF12, the missense variant R to H in its gene product, is the cause for early onset epi-

lepsy [25,26]. In the present analysis of MTLE patients, this missense variant is not present,

Fig 1. SNV distribution across 35 samples.

https://doi.org/10.1371/journal.pone.0252475.g001

Table 1. Distribution of SNV’s into different consequences with a DP cutoff of 100.

Sr.

No.

Consequence Number of alterations (SNV and INDEL)

Dpmin = 100

Number of SNVs in epilepsy-related genes

(Dpmin = 100)

Number of epilepsy-associated genes

with SNVs

1 Missense

variants

2481/175641 210/12333 121/655

2 3’-UTR 33729/175641 2542/12333 498/655

3 5’-UTR 1158/175641 77/12333 52/655

4 Intronic

variants

50946/175641 5343/12333 296/655

5 Others 87327 /175641 4161 /12333 579/655

https://doi.org/10.1371/journal.pone.0252475.t001
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Table 2. Numbers of miRNA binding sites, gained and lost, due to observed SNVs in the 3’-UTR regions of the epilepsy-associated genes.

Sr.

No.

Gene name (relatedness

to epilepsy)

Number gained, (miRNAs) Number lost, (miRNAs) Biological function

1 FGF12 (EG$) 1 (hsa-miR-4760-3p) Nil Involved in the positive regulation of voltage-

gated sodium channel activity in Epilepsy.

2 ATP1A2 (ERG) 11 (hsa-miR-4271, hsa-miR-4725-3p,

hsa-miR-4747-5p, hsa-miR-6780b-5p,

hsa-miR-6783-5p, hsa-miR-3161, hsa-

miR-371a-3p, hsa-miR-152-5p, hsa-miR-

204-3p, hsa-miR-4314, hsa-miR-4646-

5p)

14 (hsa-miR-1224-3p, hsa-miR-1260a,

hsa-miR-1260b, hsa-miR-3153, hsa-

miR-4270, hsa-miR-4502, hsa-miR-

4713-5p, hsa-miR-532-3p, hsa-miR-

5584-5p, hsa-miR-6733-3p, hsa-miR-

6733-5p, hsa-miR-6739-5p, hsa-miR-

6750-5p)

Abnormal Na+/K+ ATPase system function

disrupts the K+ gradient and impairs

glutamate clearance, which likely contributes

to epilepsy [15–17].

3 SLC1A3 (ERG) 2 (hsa-miR-3668, hsa-miR-576-3p) Nil Glutamate transport & ion-flux.

4 TUBB4A (ERG) 1 (hsa-miR-4742-5p) 5 (hsa-miR-4270, hsa-miR-4763-3p, hsa-

miR-6722-3p, hsa-miR-6754-5p, hsa-

miR-9500)

Microtubule subunit.

5 RFX3 (Potential EAG) 4 (hsa-miR-552-5p, hsa-miR-4674, hsa-

miR-760, hsa-miR-7158-5p)

8 (hsa-miR-1291, hsa-miR-146b-3p, hsa-

miR-339-5p, hsa-miR-4421, hsa-miR-

5699-3p, hsa-miR-6724-5p, hsa-miR-

6773-5p, hsa-miR-6775-3p)

Regulatory Factor X3, acts as a transcription

factor.

6 FAR1 (ERG) 4 (hsa-miR-497-3p, hsa-miR-548aa, hsa-

miR-548ap-3p, hsa-miR-548t-3p)

Nil Lipid synthesis, variants and FAR1 deficiency

[18] is associated with early-onset epilepsy.

7 GRIN2B (EG) 3 (hsa-miR-124-5p,hsa-miR-498-5p,hsa-

miR-513b-3p)

1 (hsa-miR-3974) The GluN2B subunit of N-methyl-d-aspartate

receptors responsible for Ca2+ permeability in

excitatory synaptic transmission of CNS [19].

8 NAPB (Potential EAG) 3 (hsa-miR-6818-5p, hsa-miR-6867-5p,

hsa-miR-3177-5p)

Nil Metal ion binding

9 CNTNAP2
(Neurodevelopment

associated EG)

1 (hsa-miR-4766-5p) 2 (hsa-miR-1299, hsa-miR-875-3p) CNTNAP2 encodes Caspr2. Targeted

disruption of which results in reduction in the

accumulation of K+ channels [20].

10 HECW2 (Potential EAG) 1 (hsa-miR-136-5p) Nil Ligase. Variants associated with epilepsy. Low

levels associated with Hirschsprung’s disease,

which is constipation in children.

11 NRG3 (Potential EAG) 1 (hsa-miR-580-3p) Nil Signal receptor binding. Schizophrenia.

12 ACADSB (Not found) 4 (hsa-miR-4499, hsa-miR-548u, hsa-

miR-7161-5p, hsa-miR-4724-3p)

2 (hsa-miR-1257, hsa-miR-5586-3p) ACADSB is associated with autosomal

recessive SBCAD deficiency.

13 GALC (ERG) 1 (hsa-miR-556-3p) 5 (hsa-miR-3158-5p, hsa-miR-4418, hsa-

miR-509-3-5p, hsa-miR-509-5p, hsa-

miR-574-3p)

Hydrolysis galactose.

14 SLC12A6
(Neurodevelopment

associated EG)

4 (hsa-miR-143-3p, hsa-miR-4756-3p,

hsa-miR-4770, hsa-miR-6088)

K-Cl co-transporter. Neuropathy. Mediates

electroneutral potassium-chloride co-

transport.

15 ATP8A2 (Potential EAG) 2 (hsa-miR-186-3p, hsa-miR-4422) 2 (hsa-miR-570-3p, hsa-miR-645) Helps in maintaining asymmetry in

membrane lipids.

16 HERC2 (ERG) 6 (hsa-miR-30c-1-3p, hsa-miR-30c-2-3p,

hsa-miR-5192, hsa-miR-6731-5p, hsa-

miR-6788-5p, hsa-miR-8085)

9 (hsa-miR-1273h-5p, hsa-miR-149-3p,

hsa-miR-30b-3p, hsa-miR-6779-5p, hsa-

miR-6785-5p, hsa-miR-6795-5p, hsa-

miR-6805-5p, hsa-miR-6883-5p, hsa-

miR-6887-5p)

Dysregulation of HERC2 and HERC1 proteins

is associated with severe human diseases such

as neurological disorders and cancer [21].

17 MAPRE2 (ERG) 1 (hsa-miR-4255) 3 (hsa-miR-4738-3p, hsa-miR-548g-3p,

hsa-miR-892c-3p)

MAPRE2 encodes a microtubule-associated

protein, which is a central regulator of

microtubule dynamics and reorganization

during cell differentiation [22]

18 PGAP1 (ERG) 1 (hsa-miR-510-3p) 4 (hsa-miR-1250-3p, hsa-miR-3617-5p,

hsa-miR-4635, hsa-miR-641)

Defect of PGAP1 leads to GPI-anchors with

an abnormal structure and altered

biochemical properties [23].

19 MMADHC (ERG) Nil 1 (hsa-miR-1277-5p) Vitamin B12 metabolissm.

(Continued)
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but there is a 3’-UTR SNV, G>A, instead (Fig 2A). It is very clear that the positions of loops

and stems in the two are very different, and very likely this substantially alters the tertiary

structure of this mRNA segment.

In SLC12A6 [27,28] gene, the 3’-UTR SNV is a change from G to C (Fig 2B). There is an

extra stem in the case of variant mRNA.

In FAR1 [29] gene, the SNV is a change from residue A to G (Fig 2C). While A is part of a

stem the G residue in the variant is part of a loop. There is also a significant change in the posi-

tions of loops and stems in the predicted secondary structures.

In HECW2 the base change from C to T (Fig 2D) has generated an additional stem loop

structure.

In SLC1A3, there is no difference in the secondary structure due to base changes from A to

C (Fig 2E), but it has created binding sites for two additional miRNAs.

In NAPB, which is involved in the biological process of the vesicular release of glutamate

from a pre-synapse, l [30], there are two positions with SNVs; one doublet at location 684–685

and another at location 1151. The SNVs at positions 684 & 685 are U>C and U>G (Fig 2F).

The one at 1151 is C>U (Fig 2F).

The genes which display only loss of miRNA binding sites due to SNV are: GRIN2A,

CACNB4, FBXO28, TDP2, ABHD12, RBPJ, PCMT1, and secondary structures for these are

given in S1 Fig.

It is clear from these figures that there are significant differences in the secondary structures

of the 3’-UTR segments with and without the SNV.

Three dimensional structures of 3’-UTR segments

Three-dimensional structures for the 71 residue mRNA fragments for which secondary struc-

tures were presented above were built, and Table 3 gives the folding energies for the native and

variant mRNA fragments. There is no definite correlation between folding energy and SNV

that either creates or destroys miRNA binding site.

For example, though miRNA binding sites are destroyed by the SNVs in both GRIN2A and

CACNB4, the SNV in GRIN2A has stabilized the mRNA fragment while the SNV in CACNB4
has destabilized the mRNA fragment. Similarly, though miRNA binding sites are created by

the SNVs in both SLC12A6 and SLC1A3, the SNV in SLC1A3 has stabilized the mRNA frag-

ment while the SNV in SLC12A6 has destabilized the mRNA fragment. Three dimensional

Table 2. (Continued)

Sr.

No.

Gene name (relatedness

to epilepsy)

Number gained, (miRNAs) Number lost, (miRNAs) Biological function

20 FBXO28 (Potential EAG) Nil 4 (hsa-miR-135a-3p, hsa-miR-3162-5p,

hsa-miR-3163, hsa-miR-5700)

Ubiquitination and degradation.

Chromosome deletion syndrome.

21 GRIN2A (EG) Nil 3 (hsa-miR-208a-5p, hsa-miR-208b-5p,

hsa-miR-627-3p)

NMDA receptor subunit. Epilepsy.

22 CACNB4 (EG) 1 (hsa-miR-3165) Calcium channel protein. Generalised epilepsy

23 TDP2 (ERG) Nil 1 (hsa-miR-607) Phosphodiesterase. Single strand DNA

binding. Ataxia.

24 ABHD12 (ERG) Nil 1 (hsa-miR-4485-5p) Hydrolytic enzyme. Polyneuropathy, Ataxia.

25 RBPJ (Potential EAG) Nil 1 (hsa-miR-4666a-5p) DNA-binding TF.

26 PCMT1 (Not found) Nil 1 (hsa-miR-584-5p) Methyl transferase. Diabetes.

$Note: EG = Epilepsy Genes, ERG = Epilepsy Related Genes [24].

Only SNVs present in at least 10 samples are considered.

https://doi.org/10.1371/journal.pone.0252475.t002
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structures of the native/control as well as variant mRNA segments of few representative genes

are shown in Fig 3A–3F as wire models. The hydrogen bonding interactions of the nucleotide

base at position 36 (the SNV position) is also shown in Fig 3A–3F. The view direction for the

pair of figures is identical. It is obvious that there are significant conformational differences

brought about by the differences in the hydrogen bonding interactions involving the base at

the SNV position. Similar figures for other genes are provided as S2 Fig.

Folding energy of the mRNA fragment is significant as it determines the affinity of binding

in the bimolecular mRNA–miRNA complex.

MicroRNA binding to 3’-UTR

MicroRNA binding to the target mRNAs is mediated through the argonaute proteins AGO1-4

[31]. The nucleotide residues at the 5’- and 3’- termini of the mature miRNA anchor the

miRNA to the argonaut, and the seed region (residues 2–9) recognizes the target mRNA

through Watson-Crick hydrogen bonding. The efficiency of binding depends on the accessi-

bility of the mRNA and miRNA bases for canonical pairing, with higher folding energy mak-

ing access more improbable. Different software packages have been developed after

considerations of access, sequence conservation, degree of seed pairing and other factors to

predict miRNAs that can bind at a given site. We have used software RIblast and the database

miRSNPDB to search for mature miRNAs that can bind at the 3’-UTR SNV site. The software

RNAcofold predicts the secondary structure, and using this as input, the software Rosetta

builds the three-dimensional structure of the mRNA-miRNA complex and estimates the bind-

ing energies, and these estimates are given in Table 4.

For genes FAR1, FGF12, NAPB, HERCW2, NRG3, SLC1A3 and SLC12A6, there are only

creations of binding sites for miRNAs. Three additional miRNAs will bind to FAR1 3’-UTR,

one each to FGF12 and NAPB, and four in the case of SLC12A6. The number of Watson-Crick

Fig 2. a: Secondary structure changes in FGF12 due to G to A SNV. b: Secondary structure changes in SLC12A6 due to G to C SNV. c:

Secondary structure changes in FAR1 due to A to G SNV. d: Secondary structure changes in HECW2 due to C>T SNV. e: Secondary structure

changes in SLC1A3 due to A>C SNV. f: NAPB (i): SNV positions 684 & 685 U>C and U>G; (ii): SNV position at 1151 is C>U).

https://doi.org/10.1371/journal.pone.0252475.g002

Table 3. Folding energy of the 71 residue 3’-UTR segments with and without the SNV.

Gene name 71 residue mRNA segment folding Energy, kcal/mole

Control Variant

FAR1 -21.912 -38.692

FGF12 -24.769 -18.895

GRINA -5.122 -11.936

NAPB -53.706 -42.955

SLC12A6 -37.457 -22.047

CACNB4 -49.599 -45.455

SLC1A3 -31.985 -36.485

FBXO28 -6.727 -5.747

HECW2 -31.609 -39.255

NRG3 -21.065 -19.074

MMADHC -25.422 -25.394

TDP2 -38.422 -38.485

ABHD12 -66.736 -66.806

RBPJ -42.494 -49.846

PCMT1 -10.708 -19.128

https://doi.org/10.1371/journal.pone.0252475.t003
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hydrogen bonded base-pairs in the miRNA-mRNA complex (including the seed region) is

listed in the last column of Table 4. Hydrogen bonding interactions in the seed region of the

modeled complex for FGF12 is shown schematically in Fig 4. Similar figures for other genes

are given in S3 Fig.

Discussion

Variant calling

Due to the drop in cost of sequencing, RNA-sequencing (RNA-seq) has become a powerful

tool not only in research but also for clinical applications. Several workflows developed to

identify variants by analysing RNA-seq data are found to perform equally well [32]. BWA and

bowtie2 are splice-unaware short-read aligners that map nucleotide sequence data to a refer-

ence genome by minimising edit distances. We have used as reference genome the human

genome assembly hg-19, which is not as complete and accurate as the latest assembly, GRCh38

[33]. Short reads may map equally well to multiple positions especially because nearly 50% of

the human genome consists of repetitive elements. Additionally, sequencing errors may also

Fig 3. a: Structural comparisons (control: Blue, variant: Red). top) Structures of 3’-UTR segments of FAR1 control and variant. Only

nucleotide bases are shown in stick representation. The structures and intra-molecular hydrogen bonds are radically different.

bottom) hydrogen bonding patterns involving SNV base: left, A36 (control) and right, G36 (variant). b: Structural comparisons

(control: blue, variant: red). top) Structures of 3’-UTR segments of FGF12 control and variant. Only nucleotide bases are shown in

stick representation. The structures and intra-molecular hydrogen bonds are radically different. bottom) hydrogen bonding patterns

involving SNV base: left, G36 (control) and right, A36 (variant). c: Structural comparisons (control: blue, variant: red). top) Structures

of 3’-UTR segments of GRIN2A control and variant. Only nucleotide bases are shown in stick representation. The structures and

intra-molecular hydrogen bonds are radically different. bottom) hydrogen bonding patterns involving SNV base: left, A36 (control)

and right, C36 (variant). d: Structural comparisons (control: blue, variant: red). top) Structures of 3’-UTR segments of NAPB control

and variant. Only nucleotide bases are shown in stick representation. The structures and intra-molecular hydrogen bonds are radically

different. bottom) hydrogen bonding patterns involving SNV base: left, U36 (control) and right, C36 (Variant). e: Structural

comparisons (control: blue, variant: red). top) Structures of 3’-UTR segments of SLC12A6 control and variant. Only nucleotide bases

are shown in stick representation. The structures and intra-molecular hydrogen bonds are radically different. bottom) hydrogen

bonding patterns involving SNV base: left, G36 (control) and right, C36 (variant). f: Structural comparisons (control: blue, variant:

red). top) Structures of 3’-UTR segments of CACNB4 control and variant. Only nucleotide bases are shown in stick representation.

The structures and intra-molecular hydrogen bonds are radically different. bottom) hydrogen bonding patterns involving SNV base:

left, C36 (control) and right, U36 (variant).

https://doi.org/10.1371/journal.pone.0252475.g003

Table 4. Binding energies for binding of miRNAs at sites created by 3’-UTR SNVs.

Gene Name Name of miRNA binding at

SNV

Binding Energy (kcal/

mol)

Number of Seed region residues in base-

pairing.

FAR1 hsa-miR-548aa -13.0 8

hsa-miR-548ap-3p -11.3 8

hsa-miR-548t-3p -13.0 8

FGF12 hsa-miR-4760-3p -6.0 7

SLC12A6 hsa-miR-143-3p -9.2 7

hsa-miR-4756-3p -12.7 9

hsa-miR-4770 -9.9 11

hsa-miR-6088 -11.2 8

NAPB
(1151C>T)

hsa-miR-3177 -12.7 12

HERCW2 hsa-miR-136-5p -8.90 7

NRG3 hsa-miR-580-3p -17.80 12

SLC1A3 hsa-miR-3668 -9.80 7

hsa-miR-576-3p -12.10 9

https://doi.org/10.1371/journal.pone.0252475.t004
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lead to erroneous mapping of the short reads. These factors and the small sample size are some

of the limitations of present study. Nevertheless, filtering of bases of low-quality mapping and

the high depth of read we have prescribed before accepting a variant as genuine, would have

reduced false positive SNVs. Detection of variants using RNA-seq data has one more limita-

tion coming from the fact that the RNA-seq data depend on the degree of expression and sta-

bility of the mRNA. Further, variant alleles with low frequency values are poorly detected by

the RNA-seq method [34]. Though final confirmation of variant-effect predictions have to

come from experiments, computational methods suggest what experiments to do. It is encour-

aging that 3’-UTR SNVs in eight genes we have identified (Table 2) are mentioned in ClinVar

database as being associated with epilepsy.

Protein translation—Changes through miRNA binding sites

Twin studies and drug-response studies show that there is a complex genetic influence in epi-

lepsy, the complexity stemming from the fact that epilepsy is very heterogeneous. Genetic

influence is through variants causing dys-functioning in the expression and translation of a

variety of genes [35,36]. The mechanisms are however not fully understood. Majority of earlier

studies have concentrated on missense variants, and have shown that these variants cause bio-

logical effects such as decreased current amplitude, reduction in surface expression of func-

tional receptors, alterations in the speeds of activation and deactivation of ion channels

[26,27,29,30,37–39]. These effects originate from a paucity of properly functioning protein

molecules at the desired locations within the cell. Studies using reporter gene assay have

revealed, only recently, the importance of variants in non-coding 3’-UTR regions to several

neurological disorders [40–43]. We have, therefore, chosen to identify and investigate struc-

tural consequences of the 3’-UTR SNVs occurring in at-least 10 of the 35 MTLE patients.

These SNVs have the potential to create or destroy miRNA binding sites, thereby playing

important roles in epilepsy since a number of miRNAs are differentially expressed in epilepsy

patients [44]. As may be seen in Table 2, there is only creation of binding sites in FGF12,

FAR1, NAPB, SLC1A3 and SLC12A6. Interestingly, all these genes are already known to be

associated with epilepsy because of missense variants in them [45–48]. For three of these

genes, the 3’-UTR SNVs have created binding sites for more than one miRNA. The binding

Fig 4. Schematic of mRNA-miRNA seed region hydrogen bond interactions in FGF12. (mRNA: Blue, miRNA:

Scarlet).

https://doi.org/10.1371/journal.pone.0252475.g004
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energies listed in Table 3 suggest strong binding of miRNAs at the SNV sites. Since each

miRNA binding causes translational repression, the creation of miRNA binding sites will sub-

stantially reduce the availability of functional molecules, a feature also resulting from missense

variants. We also found that in GRIN2A, CACNB4 and FBXO28, 3’-UTR SNVs occur causing

only loss of miRNA binding sites suggesting overproduction of these proteins. Our results,

thus, predict shortage and over-abundance of selected proteins in MTLE patients. A significant

reduction in the levels of SCN4B protein in the drug-resistant TLE patients compared to non-

epileptic control specimens, has been demonstrated recently [49]. On the other hand, signifi-

cant increase in levels of DNA methyl transferase enzymes has been associated with TLE [50].

Protein translation—Repression by altered mRNA structure

Translation of the mRNA message into protein consists of initiation, elongation and termina-

tion steps. The substrate of translational control is not just naked mRNA, but mRNA covered

with RNA-binding proteins (RBPs) forming ribonucleoprotein particles or RNPs. Often in

combination with miRNAs, sequence-specific RBPs play important roles in translational regu-

lation [51]. Many RBPs bind to structured elements, and binding is actually based on struc-

tural fidelity rather than primary sequence recognition [52,53]. Because of the altered tertiary

structure (Fig 3, SF1) of the variant mRNA segment, the RBPs may not be able to bind prop-

erly to generate a fully functional RNP. Further, altered structure of the variant prevents

proper pseudo-circularization needed for the action of 30-UTR effectors on translation initia-

tion at the 50-end. These features have the potential to repress translation of select proteins in

epilepsy patients. The altered mRNA segments bind quite strongly each additional miRNA

(Table 4) leading to prediction of higher translational repression. It is reassuring that these

inter-molecular hydrogen bonds in mRNA-miRNA complexes are consistent with the data in

mirSNPDB.

Febrile Seizures (FS) and MTLE

Temporal Lobe Epilepsy (TLE), is associated with focal seizures in the temporal lobe that

houses the hippocampus and processes signals of memory, speech, vision and different types

of emotions. TLE is the most common and difficult-to-treat type of epilepsy in adults [54].

Most cases of MTLE are sporadic and there are also suggestions of genetic contribution [55–

59] although no genes have yet been strongly associated specifically with MTLE. Prolonged FS

during childhood that potentially damage the hippocampus are often associated with a sub-

stantially elevated risk for future epilepsy, including TLE, after a gap of nearly 8–12 years

[60,61]. This correlation is being researched further to identify possible genetic factors. A dif-

ferentially expressed genes (DEG) study of MTLE with and without prolonged FS history has

identified 496 genes as over-expressed in the former. The Protein-Protein Interaction (PPI)

network analysis of these DEGs reveals that proteins GRIN1, GRIN2A, SLC12A5 and SLC1A2
form functionally crucial nodes in the most significant network-module [62]. In the present

study on MTLE patients, we find SNVs affecting miRNA binding sites in the 3’-UTR regions

of GRIN2A, SLC1A3 and SLC12A6, genes identical or closely related to those occurring in the

network-module (Table 2). Since miRNA binding in the 3’-UTR region is a mode of transla-

tion regulation, our observations are suggestive of the possible mechanism of linkage between

FS and MTLE. Similarly, our finding of 3’-UTR SNVs in HERC2 (Table 2) may be significant

because altered expression of HERC1, which belongs to the same family as HERC2, is shown to

be associated with FS [63].
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Materials and methods

a) Genomics data

i) Exome sequences. RNA-seq data on 38 samples available as paired reads in the Short

Read Archive (SRA) of NCBI were downloaded in the FASTQ format.

Thirty-five samples refer to MTLE patients, and three samples refer to the non-epileptic

brain tissue treated as control in this RNA-seq analysis. The sequence of human genome hg-19

assembly available in “.fa” format was downloaded from the link featured in the UCSC

Genome Browser.

ii) Epilepsy-related genes. The names of genes already known to be associated with epi-

lepsy were assembled from the database CARPEDB (http://carpedb.ua.edu/) and the article by

Wang et. at. [24]. We collected a total of 1073 genes as ‘already related to epilepsy’ genes.

b) Software used

(i) RNA-Seq. The paired reads from the samples were used without further processing.

They were mapped onto human genome assembly hg-19, using two software packages: Bow-

tie2 [64] and BWA [65]. The two sets of output Sequence Alignment Map (SAM) files were

then converted into two sets of binary map files after sorting and indexing using SAMTOOLS

software [66]. The variant calling on these two BAM files was by using the mpileup command

of SAMTOOLS (version 0.1.19-96b5f2294a) [66] followed by BCFTOOLS (Version: 0.1.19-

96b5f2294a) to generate the VCF file containing all information about the sequence variants.

Only those variants which satisfied the two conditions of mapping quality > 30 and depth of

read (DP) > 100 were retained for subsequent analysis. Analysis of these two sets of VCF files

was done in two different ways. In the first method VCF files produced by BWE software were

used, and variants present in all thirty-five drug-refractory MTLE patient samples but absent

in the three-control genome were accepted as genuine variants. These variants were summed

up using vcf-merge utility of VCFTOOLS (v0.1.11) [67] software. In the second method only

the variants that are identified by both Bowtie2 and BWA-mem mappings were considered as

genuine, irrespective of in how many samples a particular variant was observed. This final

VCF style file was used for analysis in the variant effect predictor (ENSEMBL-VEP) web-Soft-

ware from ENSMBL and has reported allele frequencies from the 1000 Genomes [68,69].

(ii) RNA structure. The RNA secondary structure was predicted using RNAFOLD server

[70]. The secondary structure of mRNA-miRNA complex was predicted using two indepen-

dent servers: IntaRNA [71] and Vienna RNAcofold [70]. The predicted structures were visual-

ized using Forna [72] and RiboSketch [73].

(iii) Three-dimensional structure prediction, visualization and superposition. The

three dimensional structure of the RNA which incorporates the input secondary structure was

predicted Denovo using software Rosetta [74]. The software COOT [75], Pymol [76] were

used for visualization and superposition of three dimensional structures.

(iv) MicroRNA identification for 3’UTR SNVs. We used two approaches to identify the

miRNAs that would bind at the SNV site. Whatever miRNAs were common to both predic-

tions were used for molecular modelling studies. In the first approach, the software RIblast

[77] was used to identify from miRNA database, miRBase 22 [78], the miRNAs that would

bind to the 11 residue query sequence with the variant base occupying position 6 in the query

sequence. In the second approach, the miRNAs likely to bind at the SNV site were identified

by searching the miRSNPDB database [79,80]. In the second approach, the miRNAs output as

potential hits are predicted to be binding, by all three tools, mirTar [81], MIRANDA [82] and

Targetscan [14].
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