EPJ manuscript No.
(will be inserted by the editor)

Increasing Average Period Lengths by Switching of
Robust Chaos Maps in Finite Precision

Nithin Nagaraj'>®, Mahesh C. Shastry?, and Prabhakar G. Vaidya!

! School of Natural Sciences and Engineering, National Institute of Advanced Studies, IISc. Campus,
Bangalore 560 012, INDIA
% Electrical Engineering Department, The Pennsylvania State University, PA 16801, USA

Abstract. Grebogi, Ott and Yorke (Phys. Rev. A 38(7), 1988) have investigated
the effect of finite precision on average period length of chaotic maps. They showed
that the average length of periodic orbits (T') of a dynamical system scales as a
function of computer precision (¢) and the correlation dimension (d) of the chaotic
attractor: T ~ £~%/2. In this work, we are concerned with increasing the aver-
age period length which is desirable for chaotic cryptography applications. Our
experiments reveal that random and chaotic switching of deterministic chaotic
dynamical systems yield higher average length of periodic orbits as compared
to simple sequential switching or absence of switching. To illustrate the applica-
tion of switching, a novel generalization of the Logistic map that exhibits Robust
Chaos (absence of attracting periodic orbits) is first introduced. We then propose
a pseudo-random number generator based on chaotic switching between Robust
Chaos maps which is found to successfully pass stringent statistical tests of ran-
domness.

1 Introduction

Grebogi, Ott and Yorke (Phys. Rev. A 38(7), 1988) were one of the first to study in detail
the effect of finite precision on the expected length of periodic orbits and their distribution
for chaotic maps. On a digital computer, since there are only a finite number of states owing
to limited precision, all autonomous chaotic maps (and flows) when simulated would have to
eventually settle down to periodic orbits for all initial conditions (Figure 1(a), T is defined as
the period length). Thus Chaos which is characterized by the existence of wandering orbits
which have infinite period length is impossible on a digital computer.

This fact is often under appreciated. Chaotic cryptographic applications appeal to the fact
that Chaos has inherently good mixing properties which are suitable for confusing and diffusing
the message. However, owing to limited precision, this is not strictly true since there would
be only a finite number of periodic orbits and no wandering orbits. This probably explains
why many chaotic cryptographic algorithms have been eventually broken though they initially
promised to exhibit strong theoretical security.

The question that naturally arises is: What is the average length of the periodic orbits of
the dynamical system implemented on a finite precision computer? Grebogi’s work [1] showed
that the average length of periodic orbits (T') of a dynamical system scales as a function of
computer precision (¢) and the correlation dimension (d, it is defined as the exponent of the
power-law dependence of the correlation integral and is a measure of the strangeness of the
attractor [2]) of the chaotic attractor: T ~ e~%2. Figure 1(b) shows the plot of the average

e-mail: nithin_nagaraj@yahoo.com

2 Will be inserted by the editor

-
IC DN - >

Transient Periodic Orbit OO é ;1 é é 10

Fig. 1. (a) Left: All initial conditions of a dynamical system when iterated on a finite precision
computer end up in a periodic orbit. (b) Right: Average period length T vs. (1/¢) in logarithmic scale
for the Tent map (T = 10%0904¢=0-407) and the Logistic map (T = 107%-2576,=0-4658) This agrees
quite well with the relationship derived by Grebogi [1].

period length T with respect to (1/¢) (logarithmic scale) for the Tent map (z — 22,0 < z <
0.5; = —2—22,0.5 <z <1) and the Logistic map (z — 4z(1 — z)). In both cases, = € [0, 1].
As it can be seen, the relationship 7' ~ =92 is empirically well matched in both cases.

Subsequently, there have been only few studies on the effect of computer precision on the
average period length. Wang et. al. [3] discovered that a single dominant periodic trajectory is
realized with major probability. They also studied coupled maps and showed that these exhibit
larger period lengths which can be useful in chaotic cryptography. The other notable work with
regards to the effect of computer precision to chaotic cryptography is that of Li [4] where they
performed quantitative analysis of the degradation of digitized chaos and proposed a new series
of dynamical indicators for 1D piecewise linear chaotic maps.

The question that we are interested in is — How can we increase the average period length T'
while still using the same precision? This paper is organized as follows. In Section 2, the effect
of switching between chaotic maps on the average period length and how different switching
strategies increase the average period length is discussed. In Section 3, a pseudo-random number
generator is built to demonstrate the applications of switching of chaotic maps. To this end,
a generalization of the Logistic map that exhibits Robust Chaos is proposed. Robust Chaos
is theoretically characterized by absence of attracting periodic orbits. This property is highly
desirable for chaotic cryptographic applications. The pseudo-random number generator switches
between these family of maps (still under finite precision). In Section 4, randomness evaluation
of the pseudo-random number generator to demonstrate its merit is performed and we conclude
in Section 5.

2 Switching of chaotic maps and its effect on average period length

We consider switching between chaotic maps and study the effect of different switching strategies
on the average period length. What we mean by switching of maps is as follows. We start with an
initial condition (typically chosen at random) and iterate with the first dynamical system (say
the Tent map). For the sequential switching strategy, after one iteration of the first dynamical
system, we iterate the second dynamical system (say the Logistic map). We then iterate the
first dynamical system again and so on and so forth. For a chaotic or random switching strategy,
we randomly or chaotically choose the dynamical system to iterate at every iteration. We then
determine the period length and repeat this for a number of initial conditions and take their
average. We do this for several precision values.

We chose the Tent map, the Logistic map and the Skewed Tent map (z — %,0 <z <
l1—=x
1-p

p; T ,p < x < 1) with values of p = 0.1 and p = 0.2. The switching strategies we used

Will be inserted by the editor 3

were sequential, chaotic (Logistic map) and random (Mersenne Twister [5] and RAND(.)). The
experiments were performed on a computer with the following specifications — Pentium® 4,
CPU 3.06 GHz, 480 M bytes RAM (C program). For smaller £, we averaged the period lengths
over 1000 randomly chosen initial conditions. The results are shown in Figure 2.

7 T T T — 7 T T r -
x Tent Map * . —— 1) Skewed Tent (p=0.1) _
O Logistic Map : o = 2) Skewed Tent (p=0.2)

6[] ¢ Switched (chaotic) () 1 B i’: fgg:;f;“gﬁ;‘::;gmg ©’\ 1
* Switched (random) — 0 — 5) RANDY) Switching +

- 6) Mersenne Twister Switching

0 2 2 6 8 0 % T 2 3 4 5 & 7 & 3§ 1w

Fig. 2. Effect of switching on average period length: (a) Left: Chaotic switching yields T =
1070-2824-0-6924 5nd Random switching using RAND(.) yields T = 1070-87662=0-9351 ' Saquential
switching (not shown in graph) yields T = 10013770420 (1) Right: Similar results were obtained
for switching between skewed Tent maps (p=0.1 and 0.2). Observe that in both cases, T follows the
following order: No switching < Sequential switching < Chaotic switching < Random switching.

It can be inferred from Figure 2 that switching increases the average period length as
indicated by the increase in the slope of the linear fit.

3 Pseudo-random number generator using switching

It is well known that chaotic dynamical systems exhibit unpredictability, ergodicity and mixing
properties. This suggests that chaotic maps can be used in generating pseudo-random numbers.
Pseudo-random numbers are those which are “random-like” in their statistical properties. In
1947, Ulam and von Neumann suggested using the Logistic map to generate a sequence of
pseudo-random numbers. Pseudo-random numbers are used in a variety of applications such
as in Monte-Carlo simulations for random sampling from a distribution and are central in
cryptographic applications to build stream and block ciphers and in several protocols requiring
generation of random data. Pseudo-random number generators are algorithms implemented
on digital systems that can generate these numbers. Due to limitations in computation and
precision, pseudo-random number sequences are necessarily periodic (as opposed to an ideal
random number generator which is a discrete memoryless information source that generates
equiprobable non-periodic symbols; we shall not discuss these here). Sequences generated by
pseudo-random number generators are expected to have large periods and pass a number of
statistical randomness tests. In this paper, the phrase random numbers refers to uniformly
distributed pseudo-random numbers.

The relationship between chaos and cryptography has been discussed by Kocarev [6]. Var-
ious one-dimensional chaotic maps have been proposed for generating random numbers, e.g:
PL1D [7], LOGMAP [8] etc. In their study of the Logistic Map, Pathak and Rao [8] propose a
pseudo-random number generator which has a period of about 10® when implemented in dou-
ble precision. This period is quite small when compared to many other ‘good’ random number
generators in the literature. They conjecture that such a period is due to the fact that the
value of a in the Logistic map: ax(1 —), becomes slightly less than 4 because of which the
map settles down into windows (attracting periodic orbits, see Figure 3(a)). We defined the
absence of attracting periodic orbits (for a particular value of the bifurcation parameter) as

4 Will be inserted by the editor

‘Full Chaos’. For the Logistic map, a = 4 exhibits ‘Full Chaos’. The fact that Full Chaos exists
only for a small set of parameters is a major hindrance in using chaotic maps as pseudo-random
number generators. The limitations of computation and precision cause the parameters to de-
viate from Full Chaos values and this may result in settling on an attracting periodic orbit.
Another major disadvantage of using chaotic maps directly is that the the successive points are
strongly correlated. This shows up in the 2-dimensional phase space plot of the iterates.

To overcome the problem of low period lengths when using chaotic maps on finite precision
computer, one of the strategies might be to switch between different chaotic maps and use them
as a sequence of random numbers. We have already shown in Section 2 that switching between
chaotic maps increases the average period length. We have also found that switching between
more number of maps increases the average period length further (we have not indicated these
results for want of space). However, we still need to evolve a strategy to avoid settling into
windows or attracting periodic orbits (only under infinite precision, in finite precision it is still
an open problem whether this has any benefits or not). To this end, we suggest using maps
with the special property that they exhibit Full Chaos for a neighborhood of the parameter
space unlike the logistic map which exhibits Full Chaos only at a single point (a = 4). This
special property is defined as Robust Chaos. Chaos which fails to satisfy this special property
is termed as Fragile Chaos (for eg., Logistic map, Tent map and most well known maps exhibit
Fragile Chaos).

3.1 Robust Chaos maps

Robust Chaos is defined by the absence of periodic windows and coexisting attractors in some
neighborhood of the parameter space [9]. Barreto [10] had conjectured that robust chaos may
not be possible in smooth unimodal one-dimensional maps. This was shown to be false with
counter-examples by Andrecut [11] and Banerjee [9]. Banerjee demonstrates the use of robust
chaos in a practical example in electrical engineering. Andrecut provides a general procedure
for generating robust chaos in smooth unimodal maps [12].

As observed by Andrecut [11], robust chaos implies a kind of ergodicity or good mixing
properties of the map. This makes it very beneficial for cryptographic purposes. The absence
of windows would mean that the these maps can be used in hardware (analog) implementation
as there would be no fragility of chaos with noise (for eg., thermal noise) induced variation of
the parameters (it would be impossible in practice to maintain a constant value, ¢ = 4, in any
analog implementation of Logistic Map). As it is impossible to eliminate noise in any hardware
(analog) implementation, this property of Robust Chaos would be beneficial.

3.1.1 Some maps where we encountered Robust Chaos

A list of maps that we found to exhibit Robust Chaos are given below. Here z € [0, 1].

1. z — Bz — |Bz| where 8 is any positive real number (# 1).
2. x— % if0<z<pand z+— % if p < ¢ < 1. The well known Tent map belongs to this

P
family of maps (p = 0.5).

3. 2D Robust Chaos map [13]: Skewed — nGLS(a,p,z) = (a=p)ty ;Z_G)QHM,O <z < p
_ (14+a—p)—+/(p—a—1)2+4a(l—=z)

5 p<z<1l, 0<a<min(p,1—p).

4. Andrecut and Ali [12] provide a novel method of converting any chaotic (not robust) 1D uni-
modal map ¢(x) (a map that is C* on [0,1] and which contains a single unique critical point
‘¢, actually a maximum) which has negative Schwarzian derivative to another unimodal

map f,Ei) (z) that exhibits robust chaos given by:

1 — pyEo(@)
) () —
£)(m)—ma Vv >0,v#1. (1)

Will be inserted by the editor 5

As an example, the following maps, both derived from the unimodal map ¢(x) = z(1 —)
generate robust chaos:

| _ el I
fj(w)zma’/e(oal)- Iv (w)zma’/e(law)- (2)

5. The B-exponential map [14] which is a generalization of the Logistic map exhibits robust
chaos. This will be discussed in 3.2.

6. One can use the fact that topological conjugacy preserves dynamics to generate a number of
family of maps that all exhibit robust chaos. As an example, by applying the diffeomorphism

C(z) = L;S”) to the B-exponential map, we can easily obtain a generalization of the

Tent map that exhibits robust chaos [14].

3.2 B-Exponential map GL(B,x)

The B-Exponential Map GL(B, z) is defined as follows:

B —zB* — (1 —z)B'~*
B-vVB ’

Here, B is the bifurcation parameter. Note that x,+; = GL(B,z,,) is the iteration function.

GL(B,z) = 0<z<land BER' B#1. (3)

3.2.1 Properties of B-exponential map

1. GL(B,z) is unimodal for e=* < B < oo (unimodal implies that the map has only one
critical point in [0,1] and it passes through zero at 0 and 1).
2. The B-Exponential Map is a generalization of the Logistic map because of the following
interesting property:
113iin1 GL(B,z) = 4z(1 — z). 4)

This can be derived by a simple application of L’Hospital’s rule. This property is the reason
behind the notation ‘GL(B,z)’ where ‘GL’ stands for Generalized Logistic. The maps of
GL(B,x) looks similar to the Logistic map for values of B near 1. It is interesting to note
that GL(B,) tends to a constant function (with value 1) as B tends to oo (for all z).

3. The Lyapunov exponent of GL(B,) is a constant for all B > e~* and equals In2. Thus
the B-Exponential map is chaotic for all real B > e~*. See [14] for details.

4. The B-Exponential Map exhibits Robust Chaos for B > e*. See [14] for details.

3.3 BEACH

We propose a pseudo-random number generator based on B-Exponential Map with the name
BEACH (B-Exponential All-Chaotic map-switcHing). As the name suggests, the pseudo-
random number generator is based on the principle of switching from map to map to extract
numbers for the generator. Such a scheme has been studied by Rowlands [15] and Zhang [16].
Their methods were limited by the choice of maps and the kind of switching (or hopping as they
call it) mechanism. MMOHOCC of Zhang [16] uses a finite number of arbitrarily predefined
chaotic maps. They use pre-defined switching patterns to extract points from the trajectories.
We propose a different switching mechanism, one that is chaotic. We also have the advantage
of choosing from a very large number of Robust Chaos maps. Zhang’s MMOHOCC has the
problem of not having Robust Chaos for any of their maps. The maps they use (Chebyshev and
Logistic) do not exhibit chaos for all values of the parameter. They use the fully chaotic value
of a = 4 for the Logistic Map. However, such a method would have the draw-back of not being

6 Will be inserted by the editor

08}
-

0.4

0.2

75 38 385 38 385 4 % 20 40 60 80 100
a B

Fig. 3. (a) Left: A portion of the bifurcation diagram for the Logistic family (z — axz(1 — z)) showing

attracting periodic orbits (windows). This is termed as Fragile Chaos. (b) Right: Bifurcation diagram

for the B-exponential map showing no windows. This is termed as Robust Chaos. This property is

useful in generating pseudo-random numbers as we shall demonstrate.

fully chaotic when implemented in hardware. It is impossible to maintain a constant value for
a parameter exactly in hardware owing to noise. Another problem they have to worry about is
the presence of attracting periodic orbits for some values of the parameters even in the chaotic
regime (this is indicated by the windows in the bifurcation diagrams). Our method eliminates
all these problems. Although our method of using Robust Chaos maps would also settle down
to periodic orbits in finite precision, this would not be case in an analog implementation. It is
still not known what repelling periodic orbits would translate to in finite precision and whether
this provides any real benefit in pseudo-random number generators.

3.3.1 The Algorithm

Figure 4 shows the flow chart for BEACH. {Z;} is the output sequence of pseudo-random
numbers of length N. There are two seeds Xy and By to the algorithm (numbers between 0 and
1). X forms the initial value of the iteration. We assume that these seeds are generated using a
random procedure like the movement of the mouse, the speed of typing on the keyboard or some
physical characteristic (like heat dissipation) in the hardware. In BEACH, each random number
is picked from a particular map. The maps are generated parametrically using a sequence of
B’s, {By,Bs,,By} where M is the number of maps we wish to use for switching. In our
implementation, we pick one iterate from each of the B-exponential maps (GL(B,z)). Thus
M = N, the length of the pseudo-random number sequence {Z;} we intend to generate (however
the B’s are not necessarily distinct owing to computer precision, though in theory there are an
infinite number of them).

This sequence of B’s can be generated in many ways. We only need to ensure that successive
B’s are not sufficiently close with a high frequency so that any two consecutive maps differ
considerably. One way of varying B is by using the Logistic Map (we take 1/value of the
Logistic Map). Alternatively, B can also be varied using the standard Tent map. Such a scheme
ensures that successive B’s are not close to each other on the real line for most of the times.
We could also vary B using the orbit of BEACH itself. For our implementation, we use the
Logistic Map for generating B’s. Although varying B according to the Logistic Map does not
give a random sequence of B’s, it is sufficient for the purpose of switching maps. Each of the
B-exponential maps are periodic because of finite precision, but as we showed in Section 2, by
switching between maps, the average period length increases considerably.

We limit the value of B to 10,000 because the maps tend to the unit function for very large
B. This may result in small period lengths or fixed points owing to limitations of precision
on a computer (values very near to 1 may be rounded off to 1 which becomes 0 in the next
iteration). If an iterate of the Logistic Map is lesser than 10~%, it is replaced by an iterate of

Will be inserted by the editor 7

Choose random seed Choose another random
for initial condition: X, seed for switching: B,

N Initialize N=0 P v

< <
Initialize output Z; = X,

v
“—>‘ BN+1:4*3N *(1-By) ‘

Switch to map C(1/B , ,X)
and iterate to get Xy,
(discard transients)

Xyer = C(U/By.y - Xy)

Zyi1 = Xy
Increment N = N+1

v

Output Zy,, ‘

Fig. 4. Flow chart for BEACH pseudo-random number generator. Here, C(B, x) is any Robust Chaos
family of maps. For our implementation, we have chosen C = GL(B,).

the B-Exponential Map. If the iterate of B-Exponential Map is also less than 10~%, then the
Logistic Map iterate is set to 104, Thus, we ensure that B does not exceed 10,000. The final
obtained value of Zy is between 0 and 1 in double precision. To convert this to an integer, we
multiply the iterate by 252 (similar to Zhang’s method [16]).

We also ensure that we do not use 0.75 as the seed for By since it is the fixed point of the
Logistic Map. The other disallowed seeds are 0 and 1 for obvious reasons.

The implementation of the algorithm was written in ANSI C in double precision floating
point arithmetic. It is very hard to analytically determine the period of BEACH. Theoretically,
robust chaos implies that there are no stable periodic orbits and we also know that the measure
of periodic orbits is zero (in Full Chaos). However, when implemented on a computer, all orbits
are periodic owing to limited precision. Since we have implemented BEACH in double precision
arithmetic, the number of chaotic maps available for switching is around 103°° which would
imply a substantial increase in average period length. As we are switching in a chaotic fashion,
consecutive maps from which random numbers are extracted will be considerably different.

4 Randomness Evaluation of BEACH pseudo-random number generator

Figure 5(a) shows the histogram of BEACH output which appears uniform. The 2D phase space
plots of BEACH output shown in Figure 5(b) appears random. To statistically confirm this,
we tested using 3 standard test suites — The National Institute of Standards in Technology’s
Statistical Test Suite (NIST) [17,18], George Marsaglia’s Diehard Battery of tests [19], and the
ENT test [20]. These tests are well known in the cryptography community and are routinely used
for evaluation of random number generators. The BEACH pseudo-random number generator
successfully passed all the tests.

4.1 Entropy, Chi-square and Mean

Shannon’s entropy is defined as H(X) = —) P(z)log, P(z) whenever P(z) # 0, where P(x)
is the probability that the random variable X is in the state . Shannon’s entropy is a measure of
the information density of the data and a good measure of the degree of disorder (randomness)
in the data. We created several binary files with the random numbers (taken as 32 bit integers)
from BEACH (0 and 1 are the two states). An optimal compression using the ENT Pseudo-
random Number Sequence Test Program (by John Walker) [20], resulted in an entropy of 1.0
bits per symbol, consistently for all the files. Thus, the program was unable to compress the

8 Will be inserted by the editor

1200
1000;":“" ik b on
800}
600}
400f

200y

0O 0.2 0.4 0.6 0.8 1

Fig. 5. (a) Left: The histogram of 10° pseudo-random numbers of BEACH. (b) Right: 2D phase space
plot. of 10* pseudo-random values of BEACH.

file. This is a strong evidence that BEACH is a good pseudo-random number generator. This
is supported by the fact that the file also passed the Lempel-Ziv Compression test which is a
part of the NIST Statistical Testing Suite.

The chi-square test is a very basic test of randomness. Knuth [21] gives a detailed treatment
of the chi-square test. The chi-square distribution is computed for a sequence file and expressed
as an absolute number and a percentage which indicates how frequently a truly random sequence
would exceed the value calculated. This percentage is a measure of the randomness. If the
percentage is less than 1% or greater than 99%, then the sequence is not random. Percentages
between 90% and 95% and 5% and 10% indicate the sequence is “almost suspect” to be non-
random [21]. Sequences generated by BEACH were within 25% to 75% consistently.

The mean of 1 billion bit sequences of BEACH was consistently at 0.5 for 1 bit word
length and 127.5 for 8 bit word length. This is reported as part of the ENT test (Table 1
in Appendix). The serial correlation was also very low, of the order of 10=¢ for a billion bit
sequence. In addition to this, ENT program carried out Monte Carlo Value of Pi test. Each
successive sequence of 24 bits are used as X and Y co-ordinates within a square. If the dis-
tance of the randomly-generated point is less than the radius of the circle inscribed within
the square, the 24-bit sequence is considered a hit. The percentage of hits is used to calculate
the value of 7. For very large streams (this approximation converges very slowly), the value
will approach the correct value of 7 if the sequence is close to random. For BEACH, the er-
ror percentage was consistently 0.0% (statistically). For the complete ENT test results, visit
hitp : [/mahesh.shastry.googlepages.com Jwork /beach/entres/. Table 1 in Appendix lists the
value of these parameters for different lengths of generated random bits.

4.2 Other well known statistical test suites

BEACH random numbers also passed the NIST Statistical Test Suite [17] which consists of 15
tests. Passing of a test in NIST Suite implies a confidence level of 99%. In other words, when
the p-value is more than the passing level, the test is considered passed with a confidence level
of 99%. The details of the 15 tests in the NIST suite and their interpretation can be found
in [17].

The Diehard Battery of Tests of George Marsaglia [19] are collectively considered to be one
of the most stringent statistical tests for randomness. Ten streams of 1 billion bits each were gen-
erated using ten different random seeds. Each of the seed was chosen randomly from 10 equally
spaced intervals from the set (0,1). The criteria for passing a Diehard test is that the p-value
should not be 0 or 1 up to 6 decimal places. BEACH passed all the tests recommended in the

Will be inserted by the editor 9

Diehard Battery. The test results are tabulated in Table 2 in the Appendix. The full results of the
Diehard Tests are available at http : //mahesh.shastry.googlepages.com [work [beach/diehard) .

Furthermore, we found that BEACH successfully passes all the tests for extremely large
sequences (we tested up to 10 Gb). In general, it is true that passing of these stringent tests
only means a failure to falsify that the sequence is random. It does not mean that the sequence
is actually random. However, since we have shown empirically that switching of chaotic maps
does considerably increase the average period length, this may be the reason for the success of
BEACH. An open problem is the determination of the exact relationship (on the lines of those
established by Grebogi et.al.) between the average period length, computer precision, correlation
dimensions of the maps, the number of maps being switched and the type of switching. Such a
relationship will help us determine a bound on the average period length of BEACH pseudo-
random number generator.

5 Conclusions

We have investigated the effect of different switching strategies on the average period length
of simple chaotic maps (Tent map, Logistic Map and Skewed Tent maps) when implemented
in finite precision. We have found that the average period lengths are in the following order
(from smaller to bigger): No switching < Sequential switching < Chaotic switching < Random
switching. Furthermore, the average period length increases with the number of maps being
switched (we did not report the actual graphs in this case for want of space). We then introduced
a generalization of the Logistic map which exhibits Robust Chaos and developed a pseudo-
random number generator using switching of Robust Chaos maps for the first time. Robust
Chaos which exhibits no attracting periodic orbits seems to be desirable for cryptographic
applications, especially for hardware (analog) implementations since noise induced variations
of the parameter does not result in windows. We have shown that our proposed pseudo-random
number generator successfully passes stringent statistical tests of randomness which are well
accepted in the cryptographic community.

Acknowledgements

The authors would like to thank Dr. Sutirth Dey of IISER, Pune, for stimulating discussions
on the B-Exponential Map. Nithin Nagaraj would like to express his sincere gratitude to NTAS,
CSIR and DST, Govt. of India, for providing with travel grants to present this work at the Inter-
national conference on Nonlinear Dynamics and Chaos: Advances and Perspectives, September
17-21, 2007, Aberdeen, held on the occasion of Prof. Celso Grebogi’s 60th birthday. We thank
the reviewers for useful comments.

References

1. C Grebogi, E Ott, A Yorke, Phys. Rev. A 38, (1988) 3688

2. P Grassberger, 1. Procaccia, Phys. Rev. Lett. 50, (1983) 346

3. S Wang, W Liu, H Lu, J Kuang, G Hu, arXiv:nlin.CD /0309005 v2 (2004)

4. S Li, G Chen, X Mou, Intl. Journal of Bifurcation and Chaos, 15, (2005) 3119

5. M Matsumoto, T Nishimura, ACM Trans. Model. Comput. Simul. 8, (1998)

6. L Kocarev, IEEE Circuits and Sys. Mag., (2001)

7. T Stojanovski, L Kocarev, IEEE Trans. on Circuits and Sys.-I: Fundamental Theory and Appl. 48,

(2001)
8. S C Pathak, S Suresh Rao, Phy. Rev. E 51, (1995) 3670
9. S Banerjee, J A Yorke, C Grebogi, Phy. Rev. Lett. 80, (1998) 3049
10. E Barreto, B R Hunt, C Grebogi, J A Yorke, Phy. Rev. Lett. 78, (1997) 4561
11. M Andrecut, M K Ali, Europhys. Lett. 54, (2001) 300
12. M Andrecut, M K Ali, Phy. Rev. E 64, (2001) 025203

10 Will be inserted by the editor

13. N Nagaraj, P G Vaidya, K G Bhat, to appear in Comm. in Nonlinear Sci. and Numerical Sim.
(2008)

14. M C Shastry, N Nagaraj, P G Vaidya, arXiv.org:cs/0607069 (2006)

15. T Rowlands, D Rowlands, Intl. Conf. on Information Tech., (2002) 1

16. X Zhang, L Shu, K Tang, arXiv.org:cs/0601010 (2006)

17. National Institute of Standards and Technology, Random Number Generation and Testing,
http://csre.nist.gov/rng

18. A Rukhin et. al.,A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications, NIST Special Publication 800-22, (2001)

19. G Marsaglia, The Diehard Battery of Tests of Randommness,
http://www.csis.hku.hk/ diehard/index.html

20. John Walker, ENT: A Pseudorandom Number Sequence Test Program,
http://www.fourmilab.ch/random/

21. D Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition
(Reading, Massachusetts: Addison-Wesley, 1997)

Appendix
Table 1. Results of ENT on 3 bitstreams generated by BEACH.
Length | Entropy Chi-square Arithmetic Monte Carlo Serial
(per bit) | distribution(%) mean value of 7 (error %) | correlation coeff
100 Mb | 1.000000 50.00 0.5000 0.01 0.000151
500 Mb | 1.000000 50.00 0.5000 0.00 0.000024
1 Gb 1.000000 75.00 0.5000 0.01 0.000035

Table 2. Results (p-values of hypothesis testing) of Diehard battery of tests on 10 bitstreams generated
by BEACH, each of length 1 Gb. The criteria for passing a Diehard test is that the p-value should not
be 0 or 1 up to 6 decimal places.

Test | Seed | Seed | Seed | Seed | Seed | Seed | Seed | Seed | Seed | Seed
No. 1 2 3 4 5 6 7 8 9 10

871 221 .250 .922 .014 .154 .069 .050 .790 .15
971 527 701 273 .448 .946 .292 .460 .902 113
761 | .942 | .321 | .679 | .407 | .5b85 | .519 | .587 | .448 | .962
374 | .801 | .193 | .098 | .799 | .117 | .651 | .437 | .105 | .015
419 | .665 | .317 | .324 | .040 | .876 | .678 | .507 | .468 | .075
925 | .199 | .869 | .401 | .978 | .998 | .427 | .930 | .901 | .268
.005 | .192 | 935 | .611 | .505 | .621 | .729 | .339 | .125 | .773
516 | .549 | .634 | .539 | .092 | .483 | .842 | .053 | .171 | .576
9 445 | .542 | .080 | .964 | .724 | .773 | .807 | .136 | .383 | .806
10 244 | .084 | 982 | .779 | .355 | .088 | .678 | .324 | .185 | .059
11 717 .440 .045 .269 .280 .376 .542 873 .589 .952
12 .66 | .702 | .008 | .900 | .145 | .065 | .427 | .784 | .292 | .065
13 .b44 | .636 | .096 | .376 | .768 | .922 | .324 | .903 | .987 | .677
14 .804 | .835 | .845 | .302 | .390 | .791 | .235 | .567 | .802 | .746
15 .082 .12 .523 .875 713 .604 .704 .909 .482 119

O~ O T W

The names of the tests (1-15) are: Birthday Spacings Test, Overlapping 5-Permutation Test, Binary
Rank Test for 31 x 31 Matrices and 32 x 32 Matrices, Binary Rank Test for 6 x 8 Matrices, Bitstream
Test, Tests OPSO, OQSO and DNA, Count-The-1’s Test On A Stream Of Bytes, Count-The-1’s Test

for Specific Bytes, Parking Lot Test, Minimum Distance Test, 3Dspheres Test, Squeeze Test,
Overlapping Sums Test, Runs Test, Craps Test.

