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Multiplexing of discrete chaotic signals in presence of noise is investigated. The existing methods
are based on chaotic synchronization, which is susceptible to noise, precision limitations, and
requires more iterates. Furthermore, most of these methods fail for multiplexing more than two
discrete chaotic signals. We propose novel methods to multiplex multiple discrete chaotic signals
based on the principle of symbolic sequence invariance in presence of noise and finite precision
implementation of finding the initial condition of an arbitrarily long symbolic sequence of a chaotic
map. Our methods work for single precision and as less as 35 iterates. For two signals, our method
is robust up to 50% noise level. © 2009 American Institute of Physics. [DOI: 10.1063/1.3157183]

Multiplexing of signals is a very important requirement
in multiuser communication systems. Consider the sce-
nario where there are multiple signals from multiple
senders to be transmitted to multiple receivers, but there
exists only one communication channel that can transmit
only one scalar signal at a time. In such a scenario, it
would be beneficial if all the signals are “added” in a
special way to create a single composite scalar signal for
transmission across the communication channel. This
single composite scalar signal is ‘“‘separated” to the re-
spective signals in a lossless or near lossless fashion at the
other end of the channel. However, there is noise which is
invariably added at the channel. This scenario can also
occur in transmission of neuronal signals from different
parts of the brain to various parts of the body through a
single pathway. In this work, we investigate multiplexing
of discrete chaotic signals in presence of noise.

I. INTRODUCTION

For linear communication systems, standard ways such
as frequency division multiplexing (different signals are al-
located to different parts of the frequency spectrum) and time
division multiplexing (different signals are allocated to dif-
ferent time slots for transmission) are used to increase the
information capacity of the channel." Nonlinear chaotic os-
cillators are increasingly being used in communications since
they offer a potential advantage over conventional classical
methods in terms of noise performance.2 Multiuser chaotic
communication has become a hot topic of research in recent
times.” It is also potentially useful in spectrum-spreading
communication systems. Hence there is a need for multiplex-
ing chaotic signals.

The existing methods of multiplexing discrete chaotic
signals are based on chaotic synchronization, which is sus-
ceptible to noise and precision limitations. Furthermore,

most of these methods fail for multiplexing more than two
discrete chaotic signals. We propose novel methods to mul-
tiplex multiple discrete chaotic signals in presence of noise.

Il. EXISTING WORKS AND THEIR LIMITATIONS

There has already been some work in multiplexing cha-
otic signals. For the first time in 1996, multiplexing of chaos
using chaotic synchronization was investigated in a simple
map and an electronic circuit model by Tsimring and
Sushchik.* Liu and Davis® used a scalar signal to simulta-
neously synchronize two different pairs of chaotic oscilla-
tors. They called this method as dual synchronization. How-
ever, there are several limitations of this method. They derive
a condition for dual synchronization which holds only for
certain discrete chaotic signals (maps) and for certain values
of the coupling coefficients. The notable omission is the bi-
nary map (Bernoulli shift). They show that the binary map
does not satisfy the condition for dual synchronization for
any value of the coupling coefficients. Thus, chaotic signals
from the binary map cannot be multiplexed by their method.
Another limitation is that their method can only work with
two chaotic signals. It is not known whether their method
can be extended to multiple signals (more than two) from
different maps.

Dual synchronization has been implemented in elec-
tronic circuits.®” Blakely and Corron’ use a symbolic
dynamics-based approach to multiplex two pairs of low fre-
quency chaotic electronic circuits that produce Rossler-like
oscillations by synchronization. They note that high quality
multiplexed synchronization is needed for successful recov-
ery of transmitted information and even a small synchroni-
zation error can lead to bit errors.

Most of the early developments were only for multiplex-
ing two chaotic signals. Although Tsimring and Sushchik®
propose a way to synchronize multiple (more than two) pairs
of discrete chaotic signals, it has some serious limitations as
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(1) The response variables at the receiver need to be glo-
bally coupled and hence are not independent. This may
be a limitation for practical communication applications.

(2) The method heavily depends on optimal choice of global
coupling at the receiver and also on the type of nonlin-
earity (only works for certain kinds of maps).

(3) For multiplexing more than two discrete chaotic signals,
two scalar variables need to be transmitted—the real and
imaginary parts of the sum of dynamical variables in
order to synchronize more than two pairs of maps. This
means that the channel needs to carry two scalar signals
whereas traditional multiplexing schemes allow only
one scalar signal on the channel.

(4) As the authors point out, even a small amount of noise is
able to destroy synchronization in spite of superstable
synchronization. They demonstrate that white noise of
magnitude 107 is sufficient to break down multiplexing
for two pairs of coupled tent maps. With increasing
number of maps, the sensitivity to noise only worsens.

(5) The method is highly sensitive to round off errors. With
single precision for the signal values, only 13 maps
could be synchronized.

(6) The empirical results show that it requires over 10 000
iterations to synchronize.

(7) The method is plagued with intermittency behavior, i.e.,
bursts of complete desynchronization which can be quite
long before synchronization can be restored.

(8) The method as proposed cannot be utilized to transmit a
nonchaotic information carrying signal along with cha-
otic signals. However, the authors do claim that it is
possible with certain modifications.

There has been more work in multiplexing chaotic sig-
nals from continuous chaotic systems (flows). Liu and Davis®
extend their work to multiplex signals from delay-differential
equations. Further progress has been made by Ning et al.’®
who extend Liu’s method for three-dimensional continuous
chaotic systems (Lorenz and Rossler systems). This has been
further improved by Salarieh and Shahrokhi'' who make use
of a time-varying output feedback strategy to achieve dual
synchronization without the need for all the master states
(only a linear combination of the master states are enough).

The next important development happened very recently
with Salarich and Shahrokhi'? who succeeded in multiplex-
ing more than two continuous chaotic signals using chaotic
synchronization via output feedback strategy. They derive a
necessary condition for multisynchronization and demon-
strate the algorithm for the Chen-Lorenz—Rdssler and the
Duffing—Van der Pol continuous time chaotic dynamical sys-
tems. However, these methods are not yet known to work for
multiple discrete chaotic signals. As already noted, a serious
limitation is that chaotic synchronization is susceptible to
noise. Even 1% of noise results in a synchronization error of
4%, as reported by Liu and Davis.’

Vaidya’s method"® which multiplexes more than two dis-
crete chaotic signals remains as the latest development on
multiplexing chaotic signals from discrete chaotic systems
[one-dimensional (1D) maps]. Vaidya’s method does not use
chaotic synchronization and is fundamentally different from
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FIG. 1. Multiplexing of chaotic signals in presence of noise. (a) Scenario 1:
Channel is lossy, noise is additive and limited in magnitude (Methods 1 and
2). Applications: multi-user communications. (b) Scenario 2: Channel is
lossless, but noise which has the same magnitude as the signal is added in a
special way at the sender (Method 3). Applications: steganography (data
hiding).

the previous approaches. We will describe the method and its
drawbacks in Sec. III C since we are going to use some of
the ideas from this method to improve on it. In principle, it is
possible to extend the methods that are proposed in this pa-
per to flows and to higher dimensional chaotic dynamical
systems, but these will not be pursued here. Since Liu and
Davis’ method does not work for the standard binary map,
we shall consider chaotic signals from the standard binary
map with randomly chosen initial conditions.

A. New approach

Our approach considers two different scenarios, as
shown in Fig. 1. In scenario 1, the communication channel is
noisy and there is no control on noise that is added during
transmission of the signal [Fig. 1(a)]. However, it shall be
assumed that the magnitude of noise is limited (we shall give
conditions on the magnitude of noise that is allowed by our
methods). Noise is uniformly distributed (white noise) and
the signals are chaotic. This corresponds to multiuser com-
munication systems.

In scenario 2 [Fig. 1(b)], the communication channel is
lossless, but noise is added to the sender. Noise is assumed to
be of the same magnitude as the chaotic signals and uni-
formly distributed. But the way in which noise is added is
under control. This scenario corresponds to steganography
(data hiding)18 or cryptographic applications where noise
could be the “payload” (secret information) to be secretly
transmitted.

Recently, Vaidya13 suggested a novel multiplexing algo-
rithm for 1D discrete chaotic signals in presence of noise. We
shall call this as method 1 and review it briefly and list some
of its limitations. A new method (method 2) will be proposed
which overcomes some of the limitations of method 1. Both
these methods are solutions to scenario 1. A novel method
(method 3) is proposed for scenario 2.

Downloaded 24 Nov 2011 to 203.200.35.11. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



033102-3 Multiplexing of discrete chaotic signals

—
4+ T pat O pat T >« »

0+ Pre«d><«P »<«qd» 4
-—0—r—1—>»

FIG. 2. T,yiseres: DOise-resistant binary map.

lll. METHOD 1: VAIDYA’S NOISE-RESISTANT MAP

Vaidya’s method'? is a solution for multiplexing chaotic
signals in presence of noise (scenario 1), which does not
make use of chaotic synchronization like previous ap-
proaches. Vaidya proposes a noise-resistant version of the
tent map. Since we are going to deal mainly with the stan-
dard binary map, a minor modification leads to a noise-
resistant version of the binary map. It is given by the follow-
ing set of equations:

y=2x, if OSx<§,

=2x+gq, if =x<p,

=0, if p=x<p+gq,

3
=2x-2(p+q), if p+g=x< ?p+q,

. 3P
=2x-(2p+gq), if ?+q5x<2p+q,

=0, if 2p+g=x<1.

Figure 2 depicts the noise-resistant binary map (denoted
by Toiseres)- Vaidya establishes that there exists conjugacy
between the ordinary binary map and 7. Given any
chaotic signal on the binary map (a chaotic signal is trajec-
tory on the map for a given initial condition), one can find
the equivalent signal on Tpgieeres- P(0<p=0.5) and ¢(0=g¢q
<<0.5) can be chosen such that 2p+2g=1.

Next, we define the symbolic sequence as follows:

S(x;)=0, if 0=x,<p+gq,

=1, if p+g=x;<1.

Here, X ={x,»}fZ'1" is the chaotic trajectory (or chaotic signal)
starting from an initial condition x;. S(X) denotes the sym-
bolic sequence for the entire trajectory.
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A. Noise resistance

For any given chaotic signal X on T,y if nNoise
N={n}="" is added such that each n; satisfies 0=n,<g, then
it can be seen that the symbolic sequence remains un-
changed,

SX)=S(X+N). (1)

The signal X is transmitted to the sender and the result-
ing signal Z=X+N is received at the receiver. However, be-
cause of the above property of symbolic sequence invariance,
we can compute S(X)(=S(Z)) and iterating backward on the
map, we can find the initial condition x;. Knowing x;, we can
easily compute x,, ...,x,, by forward iterations on the given
map and thus we can recover X. Furthermore, we can also
compute N=Z—-X. Thus we have recovered both the original
chaotic signal and noise. This noise resistance property is
provided by a nonzero value of g. The larger the ¢, the
higher the resistance to noise, but at the same time the length
of the signal has to be longer in order to determine the initial
condition x; more accurately from the symbolic sequence.
Reconstruction error for the chaotic signal and noise is not
zero owing to the problem of finding the initial condition
from the symbolic sequence with limited precision.

B. Cascading noise-resistant maps

Vaidya goes one step further and defines a cascade of
such noise-resistant maps. To add another chaotic signal Y to
X, Vaidya defines a similar noise-resistant map which maps
[0,q) onto itself. It is self-similar to T;eeres- Thus, he defines
a whole cascade of noise-resistant maps, all of which are
self-similar to the original one. The domain of succeeding
maps reduces exponentially. For further details, please refer
to Ref. 13.

With these cascades of maps, one could now add a
whole family of chaotic signals {X,,X5,,...,X;} to one noise
N (on the channel) with magnitude dictated by the number of
maps to yield the signal Z. The symbolic sequence invari-
ance is maintained at each step of cascading. Thus, the sym-
bolic sequence of Z is used to decode X; and N, where N, is
the sum of {X,,X3, ..., X,} and N. The symbolic sequence of
N, is the same as that of X,, and hence X, can be decoded.
This procedure is repeated until all the signals are losslessly
recovered along with N. Vaidya successfully applies this
method to multiplex 20 discrete chaotic signals, each of
length 350. Empirical results show that the reconstruction
error for X is of the order of 107'°. For noise N, the recon-
struction error is of the order of 0.001 [the signal range is
[0,1)]. Please refer to Ref. 13 for detailed results and discus-
sion.

C. Drawbacks of method 1
The drawbacks of method 1 are as follows.

(1) Given discrete chaotic signals from various 1D chaotic
maps, one has to find the corresponding signals in the
noise-resistant binary/tent map using topological conju-
gacy which is not easy (and may not be possible al-
ways).
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(2) The amount of noise that can be added reduces exponen-
tially as the number of chaotic signals to be multiplexed
increases linearly.

(3) The reconstruction error for X is not zero. This is due to
the problem of finding the initial condition from an ar-
bitrarily long symbolic sequence with limited precision.
The reconstruction error for N is also not zero.

(4) In principle it is possible to extend the idea of noise-
resistant maps to other chaotic maps such as the logistic
map. However, for each new map, the equations have to
be worked out explicitly.

We are motivated to invent new methods of multiplexing
which will circumvent the above problems. While exploiting
the idea of symbolic sequence invariance under the addition
of noise, we would like to devise a method which will work
for any 1D chaotic unimodal map (and generalizable to other
kinds of maps and higher dimensional ones) without the ne-
cessity of topological conjugacy. The scenario where the
magnitude of noise is equal to that of the signal also needs to
be addressed.

IV. METHOD 2

The key idea of method 1 is the notion of symbolic
sequence invariance. As long as we ensure that the symbolic
sequence of the original chaotic signal X is unaffected by
adding noise N (uniformly distributed), the resulting signal
Z=X+N has the same symbolic sequence as X(S(Z)=S(X)).
Then, given this arbitrarily long symbolic sequence S(X), the
problem reduces to determining its initial condition and iter-
ating this initial condition to obtain the entire chaotic signal
X. Once X is determined, one could subtract X from Z to
obtain noise N.

In order to find the initial condition from an arbitrarily
long symbolic sequence of a chaotic map, we make use of
Algorithm I (see Appendix). Our implementation is for the
skew-tent and skew-binary maps and can be extended to
other maps. The standard tent map and binary map are part
of this family. In a separate application,14 Algorithm I is used
for optimal lossless data compression for binary stochastic
independent and identically distributed (i.i.d.) sources.

Method 2 is described as follows.

(1) Let X;,X5,...,X; be k chaotic signals of length m to be
multiplexed. Each of these signals is obtained from dis-
tinct initial conditions (randomly chosen) on the skew
binary map (p=0.499). The skew binary map is given by
the equations

x—x/p, xe[0,p),

H(x_P)/(l_PL XE[P,1)~

Here 0<p<1. For p=0.5, it reduces to the standard
binary map or Bernoulli shift map. However, we have
chosen p=0.499, since for p=0.5 the map is a Shift map
and with finite precision (~33 bits for initial condition),
the chaotic trajectory will hit zeros after 33 iterations.
With p=0.499, this is avoided.

Chaos 19, 033102 (2009)
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FIG. 3. Method 2: for cases k=1 and k=2. The points marked X are trans-
mitted depending on the symbolic sequences of the chaotic signals. Owing
to noise at the channel, the received signal will also be uniformly distributed
in the range [0,1). This explains Fig. 5(c).

(2) Compute  the symbolic ~ sequence  {SX; P
={S(X,(1)),8(X{(2)), ..., S(X,(m))}=%. The function S(-)
is defined as follows:

S(x) =0,
=1, if p=x<l. (2)

if 0=x<p

(3) Compute
{SHZ = {(SX,(1)SX,(1), ... .SXi (1)),
(8X,(2)8X5(2), ... ,SX;(2)), -
(§X,(m)SX,(m), ...,5X,(m)),}.

Here, (-)z denotes a number that is base-B representa-
tion.

(4) Compute D={D;}'Z"", where D;=(S})o.

(5) Compute Z={Z}:="", where Z;=(2D;+1)/(2"").

(6) Transmit Z across the channel.

(7) Receive Z,,=Z+N. Here N ={N}=" where each N; is
a uniformly distributed noise in the range (—2-%*1,
+2—(k+1)).

(8) At receiver, compute Dy =|2Z,0is,l, where [(-)] is the
floor operation which computes the maximum integer
that is less than the argument. Note that Dy, =D. This
is because D< 2anoisy< (D+1). The floor operator
makes this equal to D since D is always a positive inte-
ger. This is where we have made use of the fact that the
symbolic sequence is invariant in spite of noise. Here D
has the information on the symbolic sequence of all the
k chaotic signals.

(9) Once we have D, =D, we can recover the symbolic
sequences of each of the k chaotic signals and thereby
recover the k initial conditions {X;(1),X5(1),...,X;(1)}
by Algorithm T (see Appendix).

(10) From the initial conditions, the k chaotic signals can

be recovered by forward iterations.

(I1) Noise can be recovered at the receiver by computing

Z from D and computing N=Z,,,is,—Z.

A. Experimental simulations

As a simple example, Fig. 3 shows the points transmitted
for cases k=1 and k=2. Method 2 was experimentally simu-
lated for k=20 chaotic signals of length m=200 each. They
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FIG. 4. Method 2: multiplexing of k=20 chaotic signals in presence of noise
N. (a) the seventh chaotic signal X;(-). m=200, but only first 100 are shown.
(b) phase portrait of X;(-). (c) histogram of X;(-). Note: the initial condi-
tions for the 20 chaotic signals are chosen with a precision of ten decimal
digits (~33 bits). All subsequent iterates are in double precision. Noise is
also in double precision.

were all generated by randomly chosen initial conditions on
the skew binary map with p=0.499. The initial conditions for
the 20 chaotic signals are chosen with a precision of ten
decimal digits (~33 bits). All subsequent iterates are in
double precision. Noise is also in double precision.

Figure 4 shows the seventh chaotic signal X;. The phase
portrait and the histogram are also shown. Figure 5 shows Z,
the phase portrait of noise N, phase portrait of Z,, after the
addition of noise, and the histogram of Z,;,,. Owing to white
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FIG. 5. Method 2: multiplexing of chaotic signals in presence of noise. (a)
Z signal (showing first 100 values only). (b) phase portrait of noise N. (c)
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FIG. 6. Method 2: (a) reconstruction error for the 16th chaotic signal is zero.
The reconstruction error is zero for all chaotic signals. (b) the reconstruction
error for noise N is also zero.

noise, Z,isy gives away no information about the number of
signals or the type of signals being added. This is very con-
ducive for secure communications. All the 20 chaotic signals
and noise were successfully recovered in a lossless fashion at
the receiver (see Fig. 6). This confirms the efficacy of
method 2. This method was found to work with the same
accuracy for single precision measurements.

Method 2 works in presence of a lossy channel, the noise
being additive, but the magnitude of noise that is tolerated
depends on the number of signals being multiplexed. As the
number of signals (k) increases, the magnitude of noise (27%)
that can be tolerated at the channel goes down exponentially.
For k=2, this would imply robustness to 50% of noise (com-
pare this with Liu and Davis’ dual synchronization which is
sensitive to even 1% of noise).

V. METHOD 3

The biggest advantage of method 2 is that in principle it
works for any dynamical system. As long as we know the
Markov partitions of the dynamical system, we can define
the symbolic sequence and hence use method 2. There is no
need of using topological conjugacy or construction of spe-
cial noise-resistant maps like in method 1. However, one
needs to develop an analog of Algorithm I (i.e., finding an
initial condition corresponding to an arbitrary long symbolic
sequence on the dynamical system) for the method to work.
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In method 3, the noise magnitude can be equal to the
signal magnitude. However, we can no longer operate in sce-
nario 1. We assume that we have control on the way in which
noise is added (noise is still assumed to be uniformly distrib-
uted) and that the channel is lossless (scenario 2).

Method 3 is described as follows.

(1) Let X;,X,,...,X; be k chaotic signals of length m to be
multiplexed. Each of these signals is obtained from dis-
tinct initial conditions on the skew binary map (p=0.499
for the same reason as in method 2).

(2) Let noise be N={N; j:'l" where each N, is i.i.d. (uniform)
in the range (0,1). Noise N is independently generated
but available at the receiver.

(3) Given the two signals A:{A(i)}ﬁ:’l” and B:{B(i)}ﬁ:’l”,
where A is a chaotic signal (B can be anything), we
define the operation A+B-S(A)={A(i)+B(i)-S(A())}2}"
as follows:

A(i) + B(i) - S(A(i)) = A(i) — B(i)
=A(i) + B(i)

where S(-) is defined in Eq. (2).
(4) Compute the following signals:

if S(A(i))=0
if SA())=1,

X, +N-S(X)) +1 X +Z - S(X,) + 1
aETT o AT 3 ’

X3+7Z,-S(X3)+ 1
3= 3 >

7= X+ 27y - S(Xp) + 1, 7=7.
3
(5) Transmit Z on the lossless channel. Note that the dy-
namic range of Z is [0,1).
(6) Receiver receives Z. By symbolic sequence invariance,
we have the following identities:

82)=5(Z)=5Xy), S(Zi-1)=SX;-1),

S(Z,) =8(X)).

(7) We start with Z and compute S(Z;). By the first identity,
we have S(X;). Algorithm I (see Appendix) is applied to
determine X;(1). Hence X, is recovered losslessly.
Knowing X, and S(X;), we can compute Z,_; by the
following equation:

Zk—l(i) = Xk(l) - 3Z(l) +1
=320i) - X, (i) — 1

if S(X,(i)=0

if S(X,(i))=1.

(8) Knowing Z,_;, we repeat the procedure to extract X;_;
and Z;_,. This is repeated until we have extracted all the

chaotic signals and noise N. Note that noise can be
thought of as Z, and the same procedure applies.
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FIG. 7. Method 3: multiplexing of k=24 chaotic signals in presence of
noise. (a) the 17th chaotic signal X;(-). The length m=1000, but only first
100 are shown. (b) phase portrait of X;4(-). (c) noise N(-). (d) phase portrait
of N(-). Note that magnitude of N is the same as that of X. The initial
conditions for the 24 chaotic signals are chosen with a precision of ten
decimal digits (~33 bits). All subsequent iterates are in double precision.
Noise is also in double precision.

A. Experimental simulations

Method 3 was experimentally simulated for k=24 cha-
otic signals of length m=1000 each and noise N of the same
length. The chaotic signals were all generated by randomly
chosen initial conditions on the skew binary map (p
=0.499). Figure 7(a) shows the 17th chaotic signal X;;. The
phase portrait is shown in Fig. 7(b). Figure 7(c) shows noise
N which has the same magnitude as that of the chaotic sig-
nal. The phase portrait of noise N is shown in Fig. 7(d). The
final signal that is transmitted on the lossless channel Z is
shown in Fig. 8(a). Its phase portrait and histogram are
shown in Figs. 8(b) and 8(c), respectively. Note that in this
method, the final signal Z does not have a uniform distribu-
tion although the individual chaotic signals and noise are
uniform. This is because of the special way in which the
signals were added.

No. of occurences

—
(2]

FIG. 8. Method 3: multiplexing of chaotic signals in presence of noise. (a)
Z signal generated by method 3 is not uniformly distributed. This is trans-
mitted on the lossless channel. (b) phase portrait of Z. (c) histogram of Z
showing that it is bimodal.
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FIG. 9. Method 3: (a) reconstruction error for the 17th chaotic signal is zero.
The reconstruction error is zero for all chaotic signals. (b) the reconstruction
error for noise N is not zero. This is because of division by 3 at each step
which causes error.

All the 24 chaotic signals were successfully recovered in
a lossless fashion at the receiver. As an example, Fig. 9(a)
shows that the reconstruction error for X;; is zero. The re-
construction error for noise N is not zero, as indicated in Fig.
9(b). Division by 3 in step (4) results in roundoff errors
because of finite precision (all calculations are performed in
double precision). This cannot be recovered in step (7). Even
with single precision measurements, the reconstruction error
for all chaotic signals is zero. This confirms the efficacy of
method 3.

VI. REMARKS ON THE THREE METHODS

The following observations can be made on the three
methods.

(1) The idea of symbolic sequence invariance is the key to
the success of all the three methods. The way this idea is
implemented is different in the three methods.

The way noise is handled is the same in methods 1 and
2 since there is no control on noise in scenario 1. Sce-
nario 2 is much more restrictive in terms of noise.

All the three methods rely on Algorithm I—finite preci-
sion implementation of finding the initial condition
given an arbitrarily long symbolic sequence of the cha-
otic signal. The method of extracting the symbolic se-
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quence from a “noisy nonlinear system” and applying
Algorithm I is analogous to filtering out noise in linear
systems by means of integration or other linear filters
(for, e.g., low pass filters).
Methods 2 and 3 can be easily extended to tent map,
skew-tent map, logistic map, and other unimodal maps.
It is also possible to extend the methods to nonunimodal
1D maps and possibly to higher dimensional maps. The
key is to find an analog of Algorithm I in those cases.
Method 1 has a hint of using the idea of “forbidden
syrnbol”15 by allocating the length g on the interval
which is never used by the map. This method can be
potentially used for error detection'® and correction.
In method 2, just by observing the signal on the channel,
no information can be gleaned. The distribution is uni-
form and the phase portrait is also random looking. The
fact that multiple chaotic signals have been embedded is
not obvious. This property enables it to be used in ste-
ganography or information hiding. In least significant bit
(LSB) steganography, the LSB of natural signals is re-
placed by the secret (noise or noiselike). Method 2 is
doing the reverse: most significant bit (MSB) steganog-
raphy, where the MSB of the secret (noise or noiselike)
is replaced by the symbolic sequence of the chaotic sig-
nal.
Method 3 can handle any number of chaotic signals and
noise. However, in practice there will be limitation on
the number of signals owing to finite precision since we
are rescaling the range of the signals to [0,1) (by addi-
tion of 1 and division by 3). The reconstruction error for
noise will increase with increasing number of signals
multiplexed.
The methods show that chaotic signals are highly redun-
dant and hence robust to noise. As long as the symbolic
sequence is preserved, the actual signal can be distorted
to a great deal. Also, forward iteration of chaotic dy-
namical systems exhibits sensitive dependence on initial
conditions, but backward iteration shows resistance to
noise. These features are not exhibited by random/
stochastic signals or periodic signals. This favors the use
of chaotic signals for multiuser communication applica-
tions. This also makes a strong case for why biological
systems may use chaotic signals for transmission of in-
formation. Neuronal signals may use similar mecha-
nisms for robust transport of information.
The above methods will not work for purely random
signals or for nonchaotic signals since there is no way to
reconstruct the entire trajectory by knowing the sym-
bolic sequence. The redundancy of chaotic signals is
necessary. At the same time, chaotic signals appear
“random” in distribution (for, e.g., skew-binary and
skew-tent maps have uniform distribution as the
invariant distribution, hence they are used in chaotic
cryptography”).
In contrast with earlier works on multiplexing discrete
chaotic signals using chaotic synchronization, our
methods can multiplex more than two discrete chaotic
signals (although Tsimring4 can multiplex multiple
discrete chaotic signals, we listed the drawbacks ear-

Downloaded 24 Nov 2011 to 203.200.35.11. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



033102-8 N. Nagaraj and P. G. Vaidya
lier). There are no coupling coefficients used in our
methods and hence there is no condition to be satis-
fied for multiplexing. Unlike Tsimring’s method, we
only need to transmit a single scalar signal through
the channel (like conventional multiplexing methods).
As noted previously, earlier methods based on chaotic
synchronization are vulnerable to noise. Methods 1
and 2 can tolerate noise but limited by the number of
signals that is added. However, in method 3, the noise
magnitude is the same as that of the signals, but the
reconstruction error for noise is not zero (reconstruc-
tion error for the chaotic signals is zero).

(11)  An important point to note is that both of our methods
have been found to work even if single precision is
used for all the iterates of the chaotic signals. Our
methods require less iterates than those typically re-
quired by chaotic synchronization. Tsimring’s
method” requires 10 000 iterates whereas both meth-
ods 2 and 3 proposed in this paper work with as less
as 35 iterates. This is true irrespective of the number
of chaotic signals multiplexed. Liu and Davis’ require
different number of iterates for different coupling
constants. The best they achieve for multiplexing two
cosine maps is less than ten iterates and for two logis-
tic maps it is around 50 iterates. But, these numbers
are for multiplexing only two pairs of maps.

(12) The algorithmic complexity of our methods is quite
low since the operations that are involved are com-
parisons (for finding the symbolic sequence) and
simple operations (addition, multiplication by 3, etc.).

(13)  There is no violation of Shannon’s theorems for infor-
mation transmission in any of the methods. By trans-
mitting the entire trajectory, we are sending lots of
bits, much more than actually required for sending
only the initial condition. These methods are not
meant for compression of data. These are mechanisms
to exploit the inherent redundancy in chaotic signals
in spite of noise.

VIl. CONCLUSIONS AND OPEN PROBLEMS

In this work, we have proposed new methods for multi-
plexing of discrete chaotic signals in presence of noise with-
out employing chaotic synchronization. By using the idea of
symbolic sequence invariance, we were able to “add” several
chaotic signals and “separate” them losslessly at the receiver.
We can either have a lossy channel but with limited noise
(methods 1 and 2) or have a lossless channel with noise
having the same magnitude as the signal added in a very
special way to the sender (method 3). These are suitable for
multiuser communications and steganographic applications.
An open problem is to investigate whether one can have both
features in a single method.

The inherent redundancy and structure in chaotic signals
which otherwise appear random in probability distribution
can be harnessed for robust communication of information. It
is quite likely that such efficient mechanisms (or similar
ones) of handling noise in dynamical systems are already
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being employed in naturally occurring physical and biologi-
cal systems.

Compared to some of the existing methods for multi-
plexing discrete chaotic signals based on chaotic synchroni-
zation, our methods offer several advantages such as zero
reconstruction error for the chaotic signals even with limited
precision measurements and lesser number of iterates. The
newly proposed methods can handle multiple signals from
multiple maps (including Bernoulli shift or the binary map
which was not possible by the method of Liu and Davis) and
offer good noise resistance capability. An electronic circuit
implementation based on these methods needs to be investi-
gated.
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APPENDIX: FINITE PRECISION IMPLEMENTATION
OF FINDING THE INITIAL CONDITION

ON A DISCRETE CHAOTIC MAP FROM AN
ARBITRARILY LONG SYMBOLIC SEQUENCE

Given a very long (but finite) symbolic sequence on a
known discrete chaotic map, the initial condition is deter-
mined by a backward iteration. This actually results in an
interval (since the symbolic sequence is finite in length) and
the midpoint of the interval can be used as the initial condi-
tion to recreate the symbolic sequence. As the length of the
symbolic sequence increases, the interval in which the initial
condition is going to lie shrinks in size. This creates a prob-
lem in performing the backward iteration on a finite preci-
sion computer as the two ends of the interval come very
close to each other and at some point it would be no longer
possible to continue with the backward iteration. This prob-
lem needs to be addressed by some kind of renormalization
or rescaling of the interval in order for the method to be
useful for finding an initial condition for very long symbolic
sequences.

The idea is as follows. As soon as the interval com-
pletely lies to the left of 0.5, the final initial condition will
have a “0” in its binary expansion (“1” if the interval is
completely to the right of 0.5). Hence, this can be written as
output and the current interval can be doubled in length. This
ensures that the two ends of the interval will never come
close to each other. At the end of all the iterations, the mid-
point of the final interval is written as output. The only case
in which this method would fail is when the interval
straddles the point 0.5 at every iteration. The probability of
this happening exponentially decreases with each iteration.
To handle this special case, there can be a check on the size
of the interval and once it reduces to a certain value, we stop
reading in more symbols and force an output. The interval is
reset to [0,1). The iteration starts afresh for the next incom-
ing bits. This would increase the number of output bits
slightly as we are not encoding the entire symbolic sequence
to determine a single initial condition. This increase in num-
ber of bits is negligible for long sequences.
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ALGORITHM I

1. Input: Arbitrarily long finite symbolic sequence M of
length N on the skew binary map with known parameter
p.

2. Create Markov partitions—[0,p) corresponding to sym-
bol ‘0’ and partition [p, 1) corresponding to symbol ‘1°.

3. Initialize interval [L,U) to [0,1). Initialize Tol=107%,.
4. Initialize k=1.
5. Input the kth bit from M.
6. If the bit is O, then set:
L—Llp, U+<Ulp.
else, set:
L—(L-p)/(1=-p), U« (U-p/(1-p).
Set k«—k+1.

7. If0=L,U<0.5, then Output bit ‘0’ and set:
L—2L, U-+2U.
if 0.5=L,U<1, then Output bit ‘1’ and set:

L—2L-1, U<2U-1.

8. If (U-L)=Tol, Output x;,=(L+U)/2 in binary repre-
sentation and reset [L,U)=[0,1).

9. If k=N, go to step 5, else continue to step 10.

10. If L=0.5=U, then x;,=0.5 else x;,=(L+U)/2.

11. Output x,. in binary representation.

For multiplexing of discrete chaotic signals proposed in
this paper, we chose p=0.499 since we are using the skew
binary map. The algorithm described here can be extended
easily to find the initial condition from an arbitrarily long
symbolic sequence of other chaotic maps (for, e.g., to find
the initial condition on the skew-tent map, equation in step 7
needs to be modified appropriately). A similar extension can
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be done for the logistic map as well. The algorithm can also
be extended to handle more than two Markov partitions (the
symbolic sequence is no longer binary).
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