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Abstract—Accurate change detection from high-resolution satel-
lite and aerial images is of great significance in remote sensing
for precise comprehension of Land cover (LC) variations. The
current methods compromise with the spatial context; hence, they
fail to detect and delineate small change areas and are unable
to capture the difference between features of the bi-temporal im-
ages. This paper proposes Remote Sensing Change Detection Net-
work (RSCDNet) - a robust end-to-end deep learning architecture
for pixel-wise change detection from bi-temporal high-resolution
remote-sensing (HRRS) images. The proposed RSCDNet model is
based on an encoder-decoder framework integrated with the Mod-
ified Self-Attention (MSA) andthe Gated Linear Atrous Spatial
Pyramid Pooling (GL-ASPP) blocks; both efficient mechanisms to
regulate the field-of-view while finding the most suitable trade-off
between accurate localization and context assimilation. The paper
documents the design and development of the proposed RSCDNet
model and compares its qualitative and quantitative results with
state-of-the-art HRRS change detection architectures. The above
mentioned novelties in the proposed architecture resulted in an
F1-score of 98 %, 98 %, 88 %, and 75 % on the four publicly available
HRRS datasets namely, Staza-Tisadob, Onera, CD-LEVIR, and
WHU. In addition to the improvement in the performance metrics,
the strategic connections in the proposed GL-ASPP and MSA units
significantly reduce the prediction time per image (PTPI) and pro-
vide robustness against perturbations. Experimental results yield
that the proposed RSCDNet model outperforms the most recent
change detection benchmark models on all four HRRS datasets.

Index Terms—Remote sensing, deep learning, change detection,
self attention, atrous spatial pyramid pooling.
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1. INTRODUCTION

HE human civilization’s settlement landscape and patterns
T are shifting rapidly due to the rise in human population, ac-
tive urbanization, and various technologies. The task of change
detection examines variations in natural phenomena or their state
at regular intervals of time. The results thus obtained are pro-
cessed to monitor urban expansion, environmental evaluation,
plan aresponse to disasters, examine natural resources, and Land
Use (LU) and Land Cover (LC) mapping. Keeping an accurate
record, evaluating these differences, and rigorously analyzing
this information is vital for better human development and to
attain the Sustainable Development Goals (SDGs).

Change Detection (CD) systems attempt to assign a per-pixel
binary label based on either bi-temporal (pair) or multi-temporal
(sequence) co-registered images of a given area. The changes
referred to in the problem statement can be due to changes in
landscape, disappearing or construction of objects. A long with-
standing challenge in the domain has been mis-classification
of noise as semantic change. Atmospheric conditions, sensor
calibration, geometric (viewpoint differences caused by camera
zooming and rotation), and radiometric changes (illumination
intensity variation, shadow, and seasonal changes), are the po-
tential reason for noise in the collected sample. The broad
latitude of object sizes arising from the method of data collection
(aerial, satellite and drone images) and variability of change
areas also add to the complexity of the problem. Although the
distance between the change pixels and their noisy counterparts
is narrow, we have used it to our advantage. By limiting the
feature variations of unchanged pixels and highlighting the
changed pixels, a change map is generated by the proposed
architecture. Hence, feature comparison rather than image com-
parison forms the backbone of our proposed RSCDNet model
to distinctly detect semantic changes and obtain satisfactory
performance.

The initial exploration of the algorithms in change detection
domain focused on separating the semantic and noisy changes. In
general, traditional or unsupervised change detection algorithms
can be classified into the following categories:

® [mage algebra practices include image ratio, image regres-

sion, image difference, and change vector analysis [1], [2],
among many others. In these algorithms, direct difference
calculation on the bi-temporal images is performed.
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® [mage transformation algorithms like Principal Compo-
nent Analysis (PCA) [3], Multivariate Alteration Detection
(MAD) [4], and Independent Component Analysis [5]
extract useful features from bi-temporal images by altering
and merging their feature bands.

® Classification methods include compound classification
and post-classification; both methods for obtaining land-
use categories [6], [7].

e Markov Random Fields (MRFs), wavelets, and local grad-
ual descent Algorithms [8], [9], fall into the category of
advanced models.

Programs like Copernicus and Landsat have made massive
volumes of Earth observation imagery available. World-View,
QuickBird, DeepGlobal, GF1, ZY-3, Sentinel, GF2, and several
other satellite sensors’ data can now be used to build advanced
remote sensing technologies. The boom of deep learning coupled
with massive amount of aerial data lead to development of CD
methods based on the same which can be classified as

e Feature-Based: These are designed to execute feature en-
gineering independently. These algorithms study the data
to search and correlate the features to facilitate more active
learning without being told [10].

e Patch-Based: Pixel patches are created using either raw
or difference images which are then supplied to a deep
learning model to determine the center pixel’s change
association [11].

® Image-Based: The principle of segmentation underpins this
approach. Segmentation produces results from other im-
ages using end-to-end training thus minimizing the impact
of pixel patches as much as possible [12].

The proposed RSCDNet model, incorporating GL-ASPP and
MSA blocks for context assimilation and accurate localization
falls in the Image-Based category.

The following is a summary of the rest of the paper. Relevant
work is presented in Section II. The development and design of
the proposed deep learning framework, RSCDNet is discussed
in Section III. The specifics of the training and implementation,
as well as the experimental results, are covered in Sections IV
and V. The conclusion of this paper is delineated in Section VI.

II. RELATED WORK

The interpretation of changes from bi-temporal images can
be done through two primary standards: unsupervised and su-
pervised. The former generates binary maps where the user’s
influence is minimal, while the latter requires a labeled set of
examples and is more suited for real-world situations.

Initial attempts at identifying changes from bi-temporal im-
ages were made in the early 2000 s using Markov Random
fields [2] to exploit the inter-pixel class dependencies. With
the development of image processing methods, the architec-
tures in [3], [13] generated change maps from the difference
features of bi-temporal images through linear transformation and
clustering. However, these techniques necessitated fine-tuning
of multiple parameters for different datasets. This issue was
subsequently resolved in [14] which introduced unsupervised
Bayesian frameworks that binarised the difference image to

generate change maps. R Touati et al. in [15] further devel-
oped the Bayesian framework by incorporating the Markov
mixture model and Maximum a posteriori (MAP) solution
with the stochastic optimization procedure. However, due to
the grayscale conversion of the input images, the algorithm
suffers from a lack of chrominance information, and addition
of noise owing to bilinear interpolation. The failure of the
above outlined pixel-based techniques to collect all the contex-
tual information prompted the development of object-oriented
methodologies [16], [17]. For each bi-temporal image, the au-
thors in [16] obtained a sparse description of the object features
using five statistical key points to mitigate the negative effects
of outlier pixels which were subsequently evaluated to construct
change maps. Notwithstanding the improvised performance,
the model falls short in the detection of multiscale objects. A
shift from statistical methods to invariant image modality is
observed in [18] and [19]. The architecture in [18] presented
an independent concentric circular invariant convolution which
projects the first bi-temporal image onto the imaging modality
of the second image. The model, however, fails to identify the
change when the variability between the bi-temporal images
is high. In [19], imaging modality-invariant operator forms the
basis of the algorithm. The variations in every structural area
in the two bi-temporal images were identified in terms of the
high-frequency pattern.

The results from the unsupervised methods fail to capture the
more delicate patterns to draw a change map from bi-temporal
images. The high noisy changes due to varied illumination and
viewpoints lead to low precision in the computed change map.
The availability of high computational power and an enormous
amount of data from various satellite missions such as Hi-
UCD [20] has paved the way for supervised methods producing
more reliable results.

The work in [21] was one of the first endeavors to use spectral
data to train a multi-layer perceptron network. The advent of
Convolutional Neural Networks (CNNs) transformed the given
input to the intended outcome through a series of processing
steps, resulting in a hierarchy of feature maps as seen in U-
Net [12]. A comprehensive overview of current breakthroughs
in deep learning-based change detection techniques can be found
in [22]. The state-of-the-art architectures can be divided into two
categories: early concatenation and feature comparison. [23] is
one of the earliest works in the early concatenation sub-category.
The algorithm divides the bi-temporal images into patches of
size (15 x 15 x ('), which are then concatenated and processed
through multiple convolutional and fully connected layers to
obtain a change map. However, the absence of spatial awareness
resulted in erroneous change boundaries as well as a lack of
attention to detail. The research in [24] tackled this problem by
introducing LUNet, an end-to-end spatiotemporal network that
integrates LSTM-Conv layers. The inability to extract deep and
complicated features was overcome as a result of this advance-
ment. This obstacle of overlooking finer details was partially
solved in Peng et al. [25]. The authors proposed UNet++ [25],
a variant of the U-Net [12] incorporating convolution blocks
in skip connections between the encoder and decoder which
helps alleviate the semantic gap. However, architecture has a
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limited field of view and neglects global relations. The AGCDet-
Net [26] architecture integrates an extensive dilated convolution
and spatial attention unit to capture complete context for each
pixel. Despite perceived improvements, the model is compu-
tationally expensive, and direct interpolation of the squeezed
features results in loss of information. The above-mentioned
early concatenation algorithms are image-based; hence they
are prone to misclassifying noisy changes as semantic ones.
This is where feature comparison models such as Siamese [11],
DSMSCN [27] and UCDNet [28] come into the picture with their
ability to correlate and connect object-based characteristics from
the bi-temporal images. In [11], the siamese architecture inde-
pendently derives features through downsampling the two input
images and eventually uses the pixel-wise Euclidean distance to
produce a change map. However, the model overlooks the con-
textual relationship of the adjacent pixels while generating the
thresholded change map. The above-mentioned architecture was
improved by extracting characteristics from bi-temporal images
using pre-trained Sub VGG16 weights [29]. Nevertheless, since
these weights were engineered for image scene classification,
they need to be fine-tuned for the change detection task. Mengya
Zhang et al. [30] further built upon the siamese architecture by
optimising it with the modified triplet loss in order to improve
intraclass inseparability and inter-class separability. The model
yields more reliable results, direct interpolation of the extracted
feature maps to the size of the input image resulted in the addition
of noise and loss of object information. Another attempt to mod-
ify the siamese model is [27] through the integration of a decoder
unit for upsampling instead of interpolation. Furthermore, the
study utilizes skip connections at each layer to take advantage
of not only sophisticated traits but also variances in lower-level
features.

The literature presented above sheds light on the lack of
harmonious balance between context assimilation and accurate
localization. Furthermore, most of the preceding architectures
incorporate premature concatenation which erroneously clas-
sifies noisy changes as semantic ones. This propelled us to
incorporate feature extraction followed by comparison since
noise in the bi-temporal images exhibits similar distribution.
Here we present RSCDNet, an end-to-end trainable model with
Gated Linear Atrous Spatial Pyramid Pooling (GL-ASPP) and
Modified Self-Attention (MSA) blocks to better capture the
contextual information.

Novelties of proposed RSCDNet architecture are as follows:

e The two branches of the encoder unit share weights to
derive similar complex traits from the bi-temporal images.
The extracted characteristics are then subtracted at the
bottleneck for feature comparison. This mechanism also
helps the proposed model to be more robust to the synthetic
perturbations.

e The proposed model effectively utilizes a Modified Self-
Attention (MSA) mechanism at the bottleneck to incor-
porate the spatial dependencies existing in the obtained
features. A gate is integrated into one of the feature spaces
in the MSA block to highlight the salient channels.

e The processed features are subsequently passed through
a newly introduced 6-Level Gated Linear Atrous Spatial

Pyramid Pooling (GL-ASPP) block to capture a larger
field of view. The addition of the gated linear unit after
concatenation of the dilated features helps to suppress
irrelevant channel information.

III. PROPOSED ARCHITECTURE

The detailed functionalities of the Gated Linear Atrous Spatial
Pyramid Pooling (GL-ASPP) block and Modified Self Attention
(MSA) module which are included in the proposed RSCDNet
Model are presented in the Sections III-A, III-B.

A. Gated Linear - Atrous Spatial Pyramid Pooling

Dilated convolution enables the model to expand the field of
view of kernels without compromising on computational cost
thus allowing it to integrate additional contextual information.
Atrous Spatial Pyramid Pooling (ASPP) block [31] employs
multi-rate dilated convolution in parallel with spatial squeeze
function to detect objects of varying sizes.Using this as a foun-
dation, we designed a Gated Linear Atrous Spatial Pyramid
Pooling (GL-ASPP) assembly mounted with a channel-wise
descriptor and gated module to remove redundant channel in-
formation from multi-scale features. In contrast to the vanilla
ASPP unit [31], we have limited the role of the presented unit
to widening the field of view rather than using it in combination
with other techniques to acquire complete context. This helps the
block to focus on selective neighbor context assimilation. The
newly introduced GL-ASPP block also takes into consideration
the channel dependencies to filter out peculiar information flow
from the encoder to the decoder.

The GL-ASPP block as shown in Fig. 1 comprises of six
parallel dilated convolutions with varying dilation rates and
a channel descriptor gate. The channel descriptor gate calcu-
lates attention weights with squeeze operation and computes
channel-wise product. The refined and highlighted multi-scale
characteristics from each branch are then aggregated and fed into
a Gated Linear Unit. The input is parallelly processed through
tanh and sigmoid activation branches which suppress irrelevant
contextual information. This output is fused with the input to
the GL-ASPP to get a hybrid selection of advanced contextual
features from a larger neighborhood.

Let X € RTT*WxC (i=1,...6) be the simultaneously obtained
output from the six branched dilated convolution. Each feature
vector, X?, is multiplied with the channel attention weights
computed using the global average pooling denoted by ¢ in (1).

GA; = X' @ (XY (1)

The output from each branch is then concatenated to generate
a vector GA € RT*Wx6C which acts as an input to the Gated
Linear Unit. Let 7 and o denote the tanh and sigmoid activations.
Then the output of the linear unit, GLU, can be expressed as in

Q).
(2)

The GLU output is passed through a 1x1 convolution, which
produces X; € RT*W*C Finally, a skip connection from the
GL-ASPP input is added to promote convergence.

GLU = 7(GA) @ 0(GA)
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Fig. 2. Proposed sub module: Modified Self Attention block (MSA).

B. Modified Self-Attention

Self-Attention, also known as intra-attention, is a mechanism
to compute global dependencies for each pixel. In this mecha-
nism [32], all pairing co-variances between the pixels are calcu-
lated which is then used to enhance or weaken its value according
to its similarity with other pixels in the feature map. The recep-
tive field of self-attention is the complete feature map as opposed
to the convolution operator. The Modified Self Attention (MSA)
block is systematically designed to combine the functionality
of both the backbone self-attention unit and channel attention
operation. This operator exploits the spatial-channel interde-
pendence of the input feature vector. The computed channel-self
attention characteristics are then transmitted via an attention gate
to filter extraneous information and emphasize the crucial ones
contrary to the vanilla self-attention module [32]. By overlaying
the learned attention map over the deep features, the attention
gate enhances differentiation between changed objects and the
background.

The MSA block shown in Fig. 2 generates a weighted ag-
gregate of the neighborhood vectors using three concurrent
branches. To generate an intermediate value feature, V; &

R 1%¢ a1x1 convolution is performed on the input vector, X;

€ RH*WxC followed by ReLU activation and global average
pooling. The final feature space, v, is obtained by fusing the
computed channel weights with the input vector and it is given
in (3).

v=V;®X; 3

A similar systematic approach is adopted to compute the vectors
in the other two branches. The two feature spaces, query (q)
and key (k) are obtained by a 1x1 convolution with ReLU
activation and reshaped into RV*Cs, where N = H x W and
Cy = N./F (N, and F are 256 and 8 respectively). ¢ and k are
multiplied (element-wise) to generate pixel-wise correlation or
attention weights (). The outcome is then normalized through
the softmax operation and is given in (4).

v =1q" @K )

where ¢, T and ® indicate softmax, transpose, and element-wise
matrix multiplication operation respectively.

The intermediate vector ~y, and v from the above branches,
are multiplied and reshaped to produce a multi-layered, highly
sensitive feature cluster, o € R *W*¢ which needs to be further
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refined to suppress redundant features and highlight the salient
ones. A very practical and structured solution is the addition of
an attention skip connection [33]. The multi-step delineation of
the MSA block culminates in the processing of ¢ and the input
feature vector. The penultimate operation of the MSA block is
carried out inside the attention gate. Let a, b be the intermediate
features obtained after 1x1 convolution applied on the input
feature vector X; and ¢ € RT*W*C respectively. The fused
output of a and b is scaled with the ReLU operator and then
passed through alx1 convolution with sigmoid activation, to
generate weights, 1) bluec RF W1,

T=9®X; )

The output, T in (5) is an aggregation of highly refined fea-
tures. The MSA block thus serves its purpose as a global pixel
dependency calculator.

C. Explanation and Mathematical Representation of Proposed
Architecture and Its Intermediate Stages

The aim of the research discussed in this paper is to find binary
changes in bi-temporal images. The final proposed architecture
results from adopting a systematized approach of experimenta-
tion with different techniques and selective assimilation of those
that yield a significant improvement over the existing models.
Each intermediate stage explained in the following sections de-
lineates the thought process and detailed design analysis of each
framework which finally builds up to the proposed RSCDNet
model.

1) Intermediate Stage I: Intermediate stage I is based on
early fusion [23] and is modified to obtain a detailed description
of the change map. The contracting path is a VGG-16 based
network consisting of two 3 x 3 recurrent convolutions (padded)
with a rectified linear unit (ReLU) activation, a 0.2 rate dropout
regularisation to palliate over-fitting and a 2x2 max pooling
operation for down-sampling. Thus after each contraction stage,
the spatial complexity is lowered while the feature information
is intensified. The obtained feature vectors at the end of the
contracting paths are concatenated for comparison at the bottle-
neck. Each step in the expansive path consists of upsampling the
characteristics which doubles the spatial dimension and halves
the number of features. It is followed by a repeated 3 x3 con-
volution, ReLU activation, and a dropout layer. The processed
feature maps are passed through a final 1x1 convolution with
sigmoid activation to generate the binary change map.

2) Intermediate Stage II: The proposed architecture’s second
intermediate stage adds skip links between the encoder and
decoder units. A skip connection, as the name suggests, tends
to skip some of the network layers. It provides an alternative
path for gradients to disseminate during back-propagation and
aids in resolving the problem of vanishing gradients thereby
making it ideal for model convergence. These connections pass
the information to the layers at the end of the architecture,
making it easier to classify the minute details.

Every skip connection in an n-step architecture merely con-
catenates all features at layer j with those at layer n-j. The
features of both encoders are added and then fused with the

features of the ensuing decoder. The fused output, x[j] can be
expressed as follows:

lj] = F(z[n = j] ® (e1[5] + z2[4])) (6)

In (6), 71[j] and x5 [j] are the j" step outputs for each encoder

and & is concatenation of the sum with the n — j step decoder
output.

3) Intermediate Stage III: In the third intermediate stage of
the proposed RSCDNet architecture, we introduce the vanilla
ASPP block [31] at the bottleneck. As the task of change
detection demands the perception of objects of differing sizes,
it is imperative to introduce the ASPP block to increase the field
of view for each pixel. The input feature vector is operated upon
by dilation convolutions and eventually merged.

The ASPP block entails 4 sub-blocks performing atrous con-
volutions of discrete rates followed by a dropout layer to reduce
overfitting. The resultant features from each sub-block are added
and subsequently up-sampled in the decoder block.

T= Z Y, \ T @)

where Y, is the output from (1) and r depicts the rate used for
dilated convolution. We experimented with different dilation rate
series to get the fine trade-off between the small and large fields
of view. The two rate series which performed modestly were
4-8-12-16 and 6-12-18-24, the results from which are compared
in the next section.

4) Proposed RSCDNet Model (Final Stage): A thorough
analysis of the intermediate stages described above shows that
the task of change detection can be better performed by ampli-
fying contextual perspectives for higher performance metrics.
In the final proposed RSCDNet architecture n Fig. 3, Modified
Self-Attention (MSA) and a Gated Linear Atrous Spatial Pyra-
mid (GL-ASPP) Pooling unit are embedded at the bottleneck.
Instrumental errors in data measurements are unavoidable due to
the precision limits in construction and also due to wearing over
time. This combined with changed weather patterns introduce
noise to the data we wish to study. Extracting similar features
from the image data for the purpose of change detection and
their subsequent comparative analysis in the deeper layers of
the model reduces this noise since this noise in both the images
will have similar distributions.

The input is transformed to a latent representation by the
dual encoder branches, and the decoder reconstructs a binary
change map from it. We enabled a weight-sharing mechanism
in the dual encoder network to extract similar features, which are
subsequently subtracted. The subtraction allows for the retention
of essential characteristics pertaining to changed areas while
suppressing the redundant information. This process reduces
parameters and makes the model computationally efficient. The
processed features are then passed through an extensive MSA
and GL-ASPP block. In comparison to the existing architec-
tures, we introduce a bifurcation into global context assimilation
and increased field of view for each pixel. This twin process
performs complementary functions; the first one is concerned
with change areas in a global context, while the other caters to
neighborhood pixels. The modified self-attention unit acts as a

Vr € [r1,7r2,73, .. ..
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Fig. 3. Block diagram of the proposed RSCDNet model.

context calculator for each pixel and increases or decreases the
vector accordingly, while the GL-ASPP block works to improve
the traced boundaries of the changed areas.

The features from the two contracting encoder paths are
subtracted and fed into the MSA block. If X; and X5 are the
outputs from the contracting paths for the first and second images
respectively, then subtracted output, X can be expressed as in (8).
This is then passed through the Modified Self-Attention block
((3),4 and 5).

X=X -Xy
L =a(X)

®)
(€))

In (9), «is the modified self-attention operation. After observing
the results of both the rate series from the intermediate stage III
model, the GL-ASPP block is constructed with varying rates to
precisely capture the local context. The analysis of our extensive
experimentation justified the adoption of the rate series 4-6-8-
12-16-18 as the most suitable for the task of change detection.
The intermediate result, before applying GLU, can be expressed
as in (10).

T:ZYT

where Y, is the output from the (1) and r depicts the sampling
rate used for dilated convolution. The output T is then passed
through the GLU operator of (2) to nullify superfluous character-
istics. Finally, a skip connection from the input to the GL-ASPP
output is added and it is given in (11)

vr € [4,6,8,12,16, 18] (10)

O=GLU(T)+ L (11)

Thus, with the incorporation of the MSA and GL-ASPP block,
a trade-off between enlarged and diminished fields of view with
minimal loss of information is achieved.

IV. TRAINING AND IMPLEMENTATION DETAILS
A. Dataset

To develop an effective change detection architecture that can
recognize all types of changes from reconstruction/demolition
of buildings to natural changes, the proposed architecture, its
intermediate stages, state-of-the-art architectures, and the exist-
ing segmentation models are all trained and evaluated on four
different datasets.

1) SZTAKI Air Change Benchmark Set (DatasetI) [34], [35]:
This is a publicly accessible benchmark dataset that contains 13
aerial RGB image pairs with a resolution of 1.5 m/pixel and
a shape of 952 x 640 pixels, as well as binary change masks
that were used for [34], [35] publication assessment. The input
images were taken over a period of 23 years. For change mask
labeling, the following differences in the bi-temporal images
are labeled as changed regions: (a) newly constructed regions (b)
building operations (c) planting of large groups of trees (d) fresh
plow-land (e) groundwork before building over. Each image
in the provided dataset is padded to reshape it to 1024 x 640
pixels and augmented with y-axis flips, 90 degrees rotations,
and modifying the brightness of the images by a random factor.
There are 48 training images and 12 testing images in total.

2) Onera Satellite Change Detection (Dataset II) [23]: The
Onera Satellite Change Detection (OSCD) dataset was acquired
from the Sentinel-2 satellites. Twenty-four areas with an av-
erage size of 600 x 600 pixels and a resolution of 10 meters
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Time 2 (T2)

Ground-
truth

of  change
map

Fig. 4.
and 2018), and Col IV: Dataset IV (between 2012 and 2016)

were selected from across the world, with differing levels of
urbanization and evident urban changes like buildings, roads,
etc. All of the images were cropped according to the preferred
geographical coordinates, yielding 13 band image pairs. Our
work is focused on only three band images. We considered only
the RGB bands and each image in the dataset was split evenly
into patches with a spatial resolution of 512 x 512 and a 64-pixel
overlap between neighboring patches. There were 200 images
for training, 30 for validation, and 57 for testing. The focus of
this dataset is on urban changes.

3) LEVIR - CD (Dataset III) [36]: This is a public dataset
available through the LEarning, VIsion, and Remote sensing
laboratory mentioned in paper [36]. It’s composed of 637
Google Earth (GE) pairs of image patches with a resolution
of 0.5 m/pixel and a size of 1024 x 1024 pixels. Significant
land-use changes, particularly the construction of man-made
objects, roads, buildings. etc can be seen in these bi-temporal
images which span 5 to 14 years. Given the higher spatial
complexity of these images, we divided each image into four
512 x 512 patches without overlapping of neighboring patches.
1780 training images, 256 for validation, and 512 for testing
were generated from the dataset. This dataset covered seasonal
and illumination variations, which contributed to the develop-
ment and implementation of effective change detection methods
that can reduce the influence of unnecessary changes over real
changes.

4) WHU Building Dataset (Dataset IV) [37]: The reference
change masks and a pair of co-registered aerial images (TA-2011
and TA-2016) with a combined size of 15, 354 x 32, 507 pixels.
The research is being conducted in Christchurch, New Zealand,

“1-- [ 1] ,"0

&
&
o
o
-
| ]

Test images of the datasets Col I: Dataset I (23 years of time difference), Col II: Dataset II (between 2015 and 2018), Col III: Dataset III (between 2002

which was affected by an earthquake in 2011. The study region
encompasses a significant amount of new construction. These
pictures have a ground sampling distance of 0.2 m/pixel. For
model training and evaluation, we cropped the original photos
into smaller image tiles with a size of 512 x 512 pixels. For
training purposes, patches with the unchanged class were under-
sampled, creating 554 samples while 660 samples for testing
purposes were generated.

One set of test case of bi-temporal high-resolution remote
sensing images from every dataset is given in Fig. 4 and three
sets of test cases of bi-temporal high-resolution remote sensing
images are documented in the supplementary file.

B. Loss Function

The weighted binary cross-entropy 10ss (L) was used in the
change detection process. The performance of a model whose
output is a probability value between 0 and 1 is assessed by
cross-entropy loss [38], otherwise termed as log loss. As the
predicted probability differs from the actual label, cross-entropy
loss increases. The binary crossentropy loss can be mathemati-
cally represented as in (12)

N
. 1 . .
L(t,t)=— N g t; x log(t;) + (1 —t;) x log(1 —t;)
i=1

(12)
The distribution of changed and unchanged pixels is heavily bi-
ased for the change detection task. For instance, the distribution
of unchanged and changed pixels in dataset III is 95% and 5%,
respectively. As a result, using only binary cross-entropy as the
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Fig.5. Predicted change map of proposed RSCDNet and its intermediate stages with base model U-Net (2015) [12]. Col I: Dataset I, Col II: Dataset 1I, Col I1I:
Dataset III, Col IV: Dataset IV.
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Fig. 6.  Visualization of the intermediate stages in RSCDNet.

loss function creates a class imbalance problem. To solve this
issue, a simple weighted balance strategy has been used, which
is defined as:

L=~ [ alty) x log(iy) + n(1 ~ t;) x log(1 — &;)]
(13)
In (13), « and 7 are the weights to adjust the imbalance between
the classes and penalize the loss function more for false-positive
predictions. Extensive experimentation led to the selection of «
as 2.5 and 7 as 0.5.

C. Preprocessing

The bi-temporal images were passed through a pre-processing
unit to account for varying radiometric changes such as illumi-
nation intensity, shadow, and seasonality. A histogram matching
and contrast enhancement operation were performed in this sec-
tion. Histogram matching is the means of transforming the his-
togram of a time series, image, or higher-dimensional scalar data
such that it matches the histogram of another reference. Contrast
Limited Adaptive Histogram Equalization (CLAHE) [39] was
applied to each of the images after histogram matching. Instead
of global equalization, CLAHE boosts the image’s contrast
locally. This method of local equalization works to prevent
over-amplification of noise in the image’s near-constant regions.

D. Training Setup

A 32-bit operating system with an 8 GB VRAM [NVIDIA
Quadro P4000 GPU] was used for the training of all models on
Dataset II and Dataset III. Google Colab [NVIDIA Tesla K80
GPU] with 12 GB VRAM is used to train models on Dataset |
as it required a lot more RAM in comparison to other datasets.
We adopted TensorFlow 2.0 with the Keras API framework for
training and evaluating all the models. The Adam optimizer was
used to train all models with a learning rate of 0.0001, beta; of
0.9, betasy of 0.999 and epsilon of 1 x 10~7. All models show
convergence for Dataset I, II, III, and I'V after 100, 150, 50, and

100 epochs respectively. The python source code of the proposed
model will be available at'

V. RESULTS AND DISCUSSION
A. Quality Metrics

Performance metrics such as F1 score, precision, Recall,
Jaccard score, Kappa coefficient, Overall Accuracy (OA), True
Positive Rate (TPR), True Negative Rate (TNR), False Positive
Rate (FPR), and False Negative Rate (FNR) [40], [41] are used
to quantify the results of binary change map generated from
processing bi-temporal high-resolution remote sensing images.

B. Ablation Study

In this section, we undertake the task of comparing the ef-
fects of incorporation of the meticulously designed MSA and
GL-ASPP block to the proposed RSCDNet model based on
qualitative results and performance metrics. Tables I, II, III
and IV present a comparative analysis of the quality metrics
on four different datasets. Fig. 5 presents a qualitative insight
on the results obtained from the proposed RSCDNet model
with its intermediate stages for one of the test cases. Observ-
ing Fig. 5 it can be concluded that the intermediate stage I
correctly identifies large change areas but fails to capture the
smaller counterparts. With the inclusion of skip connections
in intermediate stage II, the model overcompensates and falls
short of correctly differentiating between semantic and noisy
changes, as can be seen from the predicted change maps of
Dataset I (Fig. 5). The vanilla ASPP network in the intermediate
stage III, leads to a raise of 12% in the Kappa coefficient of
Dataset I along with an increase in the identified change areas
in the predictions of stage III. Furthermore, using the rate series
6-12-18-24 in the dilation convolution branches, all the change
areas are predicted; however, the boundaries of the changed
areas are irregular as seen in Dataset III’s predicted change
maps. While the amount of contact between the boundaries is
reduced in intermediate stage III with the 4-8-12-16 series, a
significant portion of the change area is mis-classified, resulting
in a low recall score. We combined the two series to create the
4-6-8-12-16-18 dilation rate sequence for the GL-ASPP network
in the proposed RSCDNet model to get the best of both worlds.
The performance of the proposed RSCDNet is further enhanced
through the integration of MSA and GL-ASPP blocks which
ameliorates boundary detection of changed areas by capturing
the global context; the predicted change maps of Dataset IV are
a testament to this improvement. Unlike the intermediate stages,
the proposed RSCDNet has shared weights in encoders, the
processed feature maps from which are then subtracted and not
concatenated. Apart from reducing the number of parameters,
another added advantage of shared encoders, is the removal of
noise. The calibration or sensor noise in the bi-temporal images
will have similar distribution across the range, which is hence
truncated by subtracting the encoder feature vectors and not the
images directly.

![Online]. Available: https:/github.com/deepanshi-s/RSCDNet
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Fig. 7. Predicted change map of proposed RSCDNet and other existant deep learning models on the test images. Col I: Dataset I, Col II: Dataset II, Col III:
Dataset I1I, Col IV: Dataset IV.
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Performance (F1-score) degradation comparison of the state-of-art models with the proposed RSCDNet model due to synthetic perturbations for Dataset

TABLE I
COMPARISON OF AVERAGE QUALITY METRICS FOR TEST IMAGES ON DATASET I WITH THE PROPOSED RSCDNET ARCHITECTURE AND ITS INTERMEDIATE STAGES

[ Metrics [ Skip [ ASPP [ GL-ASPP [ MSA [ FI [ Precision [ Recall [ Kappa [ ToU | OA [ TPR | TNR [ FPR [ FNR |
U-Net [12] without preprocessing v [ x X X[ 0.961 | 0374 | 0543 | 0.523 | 0.721 | 0.454 [ 0.544 [ 0.391 | 0.609 | 0.456
U-Net [12] with preprocessing v | x X X [ 0972 | 0.743 | 0.851 | 0.842 [ 0.773 | 0.948 [ 0.852 | 0.955 | 0.045 | 0.148
Tntermediate stage 1 X X X X | 0983 | 0.771 | 0.871 | 0.864 | 0.945 | 0.803 | 0.876 | 0.733 | 0.267 | 0.124
Intermediate stage 11 v | x X x| 0.981 | 0.78% | 0.882 | 0.873 | 0.821 | 0.939 | 0.883 | 0.949 | 0.051 | 0.117
Intermediate stage 111 (4-8-12-16 rates) x | X x| 0.991 | 0962 | 0982 | 0.978 | 0.957 | 0.989 | 0.980 | 0.986 | 0.014 | 0.020
Intermediate stage 111 (6-12-18-24 rates) | X | X x| 0.993 [ 0962 | 0978 | 0.981 | 0.973 | 0.991 | 0.978 | 0.993 | 0.007 | 0.022
Proposed RSCDNet model (Final stage) | x X v [ 0985 | 0982 | 0.984 | 0.983 | 0.965 | 0.995 | 0.983 | 0.994 | 0.006 | 0.017

To understand the operations behind the enhanced perfor- C. Discussion

mance of the MSA, a visual insight through heatmaps is pre-
sented. As can be seen in Fig. 6, the reduced intensity of the back-
ground after the MSA block signifies the increased confidence
of the model in discerning the changed area from the unchanged
area. Upon close observation of the changed areas after the
GL-ASPP block, a further reduction f neighborhood intensities
to yellow is a proof of the dilated convolutions with different
rates increase the field of view of each pixel; this confirms its
ability to accurately demarcate the boundaries of the changed
areas from the background. It can be clearly concluded from
the above presented discussion that the addition of MSA and
GL-ASPP block resulted in a spike in the performance metrics.

The proposed RSCDNet and its intermediate stages’ quality
metrics are compared to those of existing object segmentation
networks, like U-Net [12] and other state-of-art models such
as Siamese-based model [11], FDCNN [29], Triplet loss based
model [30], DSMCSN [27], AGCDetNet [26] and UNet++
[25]. The developed RSCDNet model does not incorporate any
pre-trained weights, rather it is trained in an end-to-end fashion.
F1-score, precision, recall, kappa coefficient, and Jaccard score,
True Positive Rate (TPR), True Negative Rate (TNR), False
Positive Rate (FPR), and False Negative Rate (FNR) are the
metrics employed to assess the performance of the proposed
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TABLE II
COMPARISON OF AVERAGE QUALITY METRICS FOR TEST IMAGES ON DATASET I1 WITH THE PROPOSED RSCDNET ARCHITECTURE AND ITS INTERMEDIATE STAGES

[ Metrics [ Skip [ ASPP [ GL-ASPP | MSA [ F1 [ Precision [ Recall [ Kappa [ ToU [ OA | TPR [ TNR | FPR | FNR |
U-Net [12] without preprocessing N X X X 0.652 0.531 0.844 | 0.643 | 0478 | 0.967 | 0.839 | 0.967 | 0.033 | 0.161
U-Net [12] with preprocessing N X X 0.941 0.867 0.715 | 0.773 | 0.641 | 0.967 | 0.711 | 0.985 | 0.015 | 0.289
Intermediate stage I X X X X 0.981 0.973 0.967 | 0.978 | 0.967 | 0.991 | 0.967 | 0.989 | 0.011 | 0.033
Intermediate stage Il N X X X 0.981 0.979 0.978 | 0.978 | 0.972 | 0.989 | 0.978 | 0.991 | 0.009 | 0.022
Intermediate stage III (4-8-12-16 rates) X v’ X X 0.978 0.967 0.978 | 0.971 | 0.961 | 0.989 | 0.978 | 0.989 | 0.011 | 0.022
Intermediate stage III (6-12-18-24 rates) X v’ X X 0.978 0.979 0.980 | 0.981 | 0.974 | 0.990 | 0.982 | 0.990 | 0.010 | 0.018
Proposed RSCDNet model (Final stage) X X N N 0.984 0.982 0.984 | 0.985 | 0.961 | 0.994 | 0.983 | 0.994 | 0.006 | 0.017

TABLE III

COMPARISON OF AVERAGE QUALITY METRICS FOR TEST IMAGES ON DATASET 11 WITH THE PROPOSED RSCDNET ARCHITECTURE AND ITS INTERMEDIATE STAGES

[ Metrics [ Skip [ ASPP [ GL-ASPP [ MSA [ FI [ Precision | Recall [ Kappa [ ToU | OA [ TPR | TNR [ FPR [ FNR |
U-Net [12] without preprocessing v’ X X X 0.264 0.289 0.244 | 0.221 | 0.154 | 0.924 | 0.235 | 0.956 | 0.044 | 0.765
U-Net [12] with preprocessing v’ X X X 0.781 0.867 0.711 | 0.767 | 0.643 | 0.971 | 0.706 | 0.989 | 0.011 | 0.294
Intermediate stage I X X X X 0.815 0.822 0.889 | 0.843 | 0.741 | 0.978 | 0.889 | 0.990 | 0.010 | 0.111
Intermediate stage I v’ X X X 0.821 0.742 0.922 | 0.814 | 0.704 | 0.972 | 0.916 | 0.965 | 0.035 | 0.084
Intermediate stage IIT (4-8-12-16 rates) X v’ X X 0.792 0.813 0.772 | 0.751 | 0.643 | 0.967 | 0.769 | 0.978 | 0.022 | 0.231
Intermediate stage III (6-12-18-24 rates) X v’ X X 0.678 0.771 0.614 | 0.656 | 0.514 | 0.956 | 0.607 | 0.991 | 0.009 | 0.393
Proposed RSCDNet model (Final stage) X X v’ v~ | 0.884 0.872 0.895 | 0.873 | 0.781 | 0.993 | 0.894 | 0.995 | 0.005 | 0.106

TABLE IV
COMPARISON OF AVERAGE QUALITY METRICS FOR TEST IMAGES ON DATASET IV WITH THE PROPOSED RSCDNET ARCHITECTURE AND ITS INTERMEDIATE STAGES

Metrics

SKip | ASPP | GL-ASPP | MSA | FI_| Precision | Recall | Kappa | ToU | OA | TPR | TNR | FPR | FNR |

U-Net [12] without preprocessing v’ X X X 0.481 0.391 0.622 | 0.462 | 0.323 | 0.951 | 0.618 | 0.961 | 0.039 | 0.382
U-Net [12] with preprocessing v’ X X X 0.691 0.741 0.652 | 0.681 | 0.531 | 0.982 | 0.652 | 0.991 | 0.009 | 0.348
Intermediate stage I X X X X 0.521 0.443 0.655 | 0.504 | 0.363 | 0.962 | 0.651 | 0.969 | 0.031 | 0.349
Intermediate stage II v’ X X X 0.642 0.581 0.723 | 0.634 | 0.482 | 0.967 | 0.717 | 0.978 | 0.022 | 0.283
Intermediate stage 11T (4-8-12-16 rates) X v’ X X 0.504 0.489 0.514 | 0.482 | 0.331 | 0.964 | 0.506 | 0.978 | 0.022 | 0.494
Intermediate stage 111 (6-12-18-24 rates) X v’ X X 0.541 0.502 0.583 | 0.521 | 0.373 | 0.956 | 0.578 | 0.967 | 0.033 | 0.422
Proposed RSCDNet model (Final stage) X X v’ N 0.752 0.741 0.762 | 0.744 | 0.603 | 0.984 | 0.765 | 0.991 | 0.009 | 0.235
TABLE V

COMPARISON OF AVERAGE QUALITY METRICS FOR TEST IMAGES ON DATASET I WITH THE PROPOSED RSCDNET ARCHITECTURE AND BENCHMARK MODELS

[ Metrics [ F1Score [ Precision | Recall [ Kappa | ToU [ OA [ TPR | TNR [ FPR [ FNR |
Siamese (2017) [11] 0.856 0.878 0.851 0.661 0.634 0.970 0.852 0.978 0.022 0.148
UNet++ (2019) [25] 0.872 0.989 0.771 0.863 0.767 0.978 0.771 0.989 0.011 0.229
Triplet loss based model (2019) [30] 0.889 0.861 0.933 0.889 0.832 0.971 0.933 0.978 0.022 0.067
FDCNN (2020) [29] 0.542 0.501 0.589 0.525 0.373 0.952 0.589 0.967 0.033 0411
DSMSCN (2020) [27] 0.434 0.401 0.482 0.351 0.478 0.856 0.478 0.911 0.089 0.522
AGCDetNet (2021) [26] 0.878 0.952 0.822 0.878 0.789 0.989 0.821 0.990 0.010 0.179
Proposed RSCDNet model 0.982 0.983 0.981 0.984 0.963 0.992 0.985 0.991 0.009 0.015

TABLE VI

COMPARISON OF AVERAGE QUALITY METRICS FOR TEST IMAGES ON DATASET I1 WITH THE PROPOSED RSCDNET ARCHITECTURE AND BENCHMARK MODELS

[ Metrics [ FlScore [ Precision [ Recal [ Kappa | ToU [ OA [ TPR | TNR | FPR | FNR |
Siamese (2017) [11] 0.689 0.652 0.751 0.678 0.533 0.981 0.751 0.983 0.017 0.249
UNet++ (2019) [25] 0.763 0.842 0.701 0.762 0.622 0.978 0.706 0.985 0.015 0.294
Triplet loss based model (2019) [30] 0.967 0.955 0.978 0.973 0.941 0.975 0.975 0.981 0.205 0.205
FDCNN (2020) [29] 0.424 0.570 0.341 0.411 0.271 0.967 0.344 0.989 0.011 0.658
DSMSCN (2020) [27] 0.761 0.722 0.803 0.755 0.611 0.978 0.801 0.978 0.022 0.199
AGCDetNet (2021) [26] 0.963 0.934 0.978 0.945 0.920 0.989 0.978 0.989 0.011 0.022
Proposed RSCDNet model 0.982 0.984 0.983 0.981 0.960 0.992 0.984 0.993 0.007 0.016

RSCDNet model quantitatively. A qualitative comparison of the = Dataset II, III, and IV, our model provides a 2%, 3%, and 3%
proposed RSCDNet model with other segmentation approaches  increment in F1-score respectively in contrast to the latest state-
and state-of-art architectures for the task of change detection is  of-art model, while for Dataset I, a heavy increment in all the
presented in Fig. 7. metrics can be seen. Fig. 7 reveals that the principal challenge in

Tables V, VI, VII and VIII contain tabulated results of the the generation of change maps is the variation in shapes and close
performance metrics of all the models. The evaluation was boundaries of the changed areas. The proposed RSCDNet model
conducted by inferring the models at convergence. For the hasabetter track record compared to other existing architectures
FDCNN model, in accordance in [29] Min Zhang et al., we in overcoming this challenge. The enhancement of the results
used pre-trained VGG16 weights optimized on the aerial image due to the pre-processing unit can be inferred from the change
data (AID), [42] and the exact implementation was followed. For  maps produced with and without pre-processing in U-Net (base
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TABLE VII
COMPARISON OF AVERAGE QUALITY METRICS FOR TEST IMAGES ON DATASET 11T WITH THE PROPOSED RSCDNET ARCHITECTURE AND BENCHMARK MODELS

[ Metrics [ FlScore [ Precision [ Recal | Kappa [ ToU [ OA [ TPR [ TNR [ FPR [ FNR |
Siamese (2017)[11] 0.631 0.684 0.532 0.567 0.462 0.905 0.531 0.956 0.044 0.469
UNet++ (2019) [25] 0.443 0.567 0.362 0.413 0.282 0.941 0.356 0.981 0.019 0.644
Triplet loss based model (2019) [30] 0.721 0.867 0.622 0.714 0.571 0.973 0.567 0.989 0.011 0.433
FDCNN (2020) [29] 0.582 0.522 0.651 0.562 0.413 0.961 0.652 0.967 0.033 0.348
DSMSCN (2020) [27] 0.854 0.855 0.852 0.846 0.761 0.945 0.851 0.971 0.029 0.149
AGCDetNet (2021) [26] 0.851 0.845 0.863 0.855 0.752 0.981 0.856 0.981 0.019 0.144
Proposed RSCDNet model 0.881 0.874 0.890 0.871 0.783 0.989 0.891 0.992 0.008 0.109

TABLE VIII

COMPARISON OF AVERAGE QUALITY METRICS FOR TEST IMAGES ON DATASET IV WITH THE PROPOSED RSCDNET ARCHITECTURE AND BENCHMARK MODELS

‘ Metrics ‘ F1 Score ‘ Precision ‘ Recall ‘ Kappa ‘ ToU ‘ OA ‘ TPR ‘ TNR ‘ FPR ‘ FNR ‘
Siamese (2017) [11] 0.441 0.333 0.651 0.412 0.278 0.943 0.654 0.951 0.049 0.356
UNet++ (2019) [25] 0.473 0.682 0.361 0.461 0.311 0.967 0.366 0.989 0.011 0.634
Triplet loss based model (2019) [30] 0.702 0.755 0.661 0.684 0.541 0.978 0.663 0.989 0.011 0.337
FDCNN (2020) [29] 0.378 0.304 0.513 0.352 0.234 0.952 0.508 0.956 0.044 0.492
DSMSCN (2020) [27] 0.567 0414 0.903 0.545 0.396 0.943 0.895 0.943 0.057 0.105
AGCDetNet (2021) [26] 0.717 0.727 0.723 0.725 0.565 0.979 0.718 0.986 0.014 0.282
Proposed RSCDNet model 0.754 0.743 0.765 0.743 0.602 0.983 0.764 0.992 0.008 0.236
model). Siamese [11] and FDCNN [29] architecture are unable TABLE IX

to differentiate between semantic and noisy changes due to low
parameters thus resulting in higher false positives. Looking at the
results of the Triplet loss based Model [30] and DSMSCN [27]
model it can inferred that the models fail to demarcate change
boudaries. On comparing the results of RSCDNet with the
AGCDetNet model [26] and UNet++ [25], it can be concluded
that processing the bi-temporal images separately for feature
extraction rather than early image comparison helps to eliminate
noise with the similar distribution. Currently, the AGCDetNet
(2021) [26] is the best performing stat-of-art model. Several
trials were conducted for the RSCDNet and AGCDetNet [26],
the corresponding metrics like F1 score, Jaccard and Kappa are
presented for comparison in Fig. 8. Median F-1 for RSCDNet is
higher than that of AGCDetNet for all the datasets, thus implying
that the RSCDNet is consistently stable. Thus, based on the
extensive discussion and accompanying images, we can aver
that the proposed model effectively resolves many of the issues
that dogged previous architectures; the most pressing of which
are concerns about change object shape and size, as well as
border demarcation.

D. Robustness Experiments

In order to evaluate the robustness properties of the proposed
RSCDNet model we performed a set of experiments with the
synthetic perturbations. The bi-temporal images from the test
set of Dataset IV were transformed with three different type
of noise: Gaussian, Speckle and Poisson at three different in-
tensities between 1 to 3; 1 being the lowest and 3 the highest.
The noisy images are then passed through the already trained
models on “clean” train images. The Fig. 9 plots the degradation
in the F1-score for the state-of-art and the proposed RSCDNet
model across all the noise variations. It can be observed that
the proposed RSCDNet model shows minimal degradation in
the performance. This can be attributed to the late feature
comparison and shared encoders for the bi-temporal images.
Looking closely at the performance and the images (Fig. 9 in
supplementary paper) of the AGCDetNet [26], U-Net [12] and
proposed RSCDNet model it can be see that early concatenation

COMPARISON OF COMPUTATIONAL COMPLEXITY ANALYSIS OF DIFFERENT
CHANGE DETECTION MODELS

Parameters FLOPs Avg. TT PTPI

‘ (in million) | (in billion) | (in min) | (in ms)
Intermediate stage I 24.38 48.74 3.68 192
Intermediate stage IT 25.77 51.5 4.01 176
Intermediate stage IIT 62.13 121.1 1.20 417
Proposed RSCDNet model 9.7 18.14 3.60 158
U-Net (2015) [12] 31.03 62.05 3.05 254
Siamese (2017) [11] 3.85 7.7 1.94 151
UNet++ (2019) [25] 10.19 20.38 5.48 550
Triplet loss model (2019) [30] 3.85 7.7 2.03 140
FDCNN (2020) [29] 0.13 0.27 0.277 1048
DSMSCN (2020) [27] 7.68 15.33 2.77 285
AGCDetNet (2021) [26] 44.1 88.2 3.07 650

propagates the noisy changes through the model (U-Net) which
are then suppressed by the spatial and channel attention blocks
in AGCDetNet [26]. Going one step further in the RSCDNet
model, building the trade-off between the dilated convolution
and attention mechanism is helping the model to understand the
noise distribution in the dataset.

E. Computational Complexity

The computational complexity of all models is examined
with regards to the number of parameters used, floating point
operations (FLOPs), training and prediction time per image
as is presented in Table IX. Siamese model [11] utilizes the
least parameters (3.35 million) and FLOPs (7.7 billion), while
AGCDetNet [26] requires the most parameters (44.1 million)
and 88.2 billion FLOPs amongst the state-of-art models. The
proposed RSCDNet uses 9.7 million parameters and 18.14
billion FLOPs. It also employs shared weights in the dual
encoder network, which aids in extracting similar features from
bi-temporal images while also lowering the architecture’s com-
putational complexity. Although FDCNN model exhibits the
least number of parameters and FLOPs but shows poor detection
of the change areas. As is evident from Table IX, the proposed
RSCDNet exhibits the least parameters, FLOPs and prediction
time requirement among all other better performing state-of-the-
art models, and hence, it is the most efficient solution to address
the problems discussed in this paper.
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VI. CONCLUSION

In remote sensing, change detection is a crucial step in
natural resource investigation. An end-to-end deep learning
architecture for change detection from high-resolution remote
sensing imagery was presented in this paper. During the change
detection task, the proposed RSCDNet resolved object shape
and size heterogeneity as well as boundary-touching problems.
As opposed to the base model U-Net, the proposed RSCD-
Net engaged a newly introduced, robust GL-ASPP block and
modified self-attention mechanism to derive high-level spatial
data and collectively hold vital information. Test outcomes on
four public change detection datasets imply that our proposed
RSCDNet model delivered excellent results in terms of Fl1,
Precision, Recall, Jaccard, Kappa Coefficient, and other metric
scores as compared to recent state-of-the-art change detection
deep learning models. Further the fine trade-off between the
complete context assimilation and field-of-view regulation is
also providing the “robustness” to synthetic noise and min-
imal degradation in the performance. Currently the modified
self-attention (MSA) module is taking a huge chunk of training
time. Incorporating the current breakthroughs in self-attention
for GPU training, the computational complexity of the design
will be lowered and the architecture will be more efficient.
Future work in the change detection domain will rely heavily
on obtaining multi-spectral image samples and developing a
dataset with distinct types of changes. The extension of this
approach to instance segmentation of different kinds of change
sets the stage for future work. Furthermore, with fine-tuning,
the proposed model can be used for a multitude of other image
segmentation domains.
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