Extension of Laguerre polynomials with negative arguments II

T.N. Shorey ${ }^{\text {a }}$, Sneh Bala Sinha ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ NIAS, Bangalore, 560012, India
${ }^{\mathrm{b}}$ IISc Bangalore, Department of Mathematics, 560012, India

Received 19 October 2021; received in revised form 28 February 2022; accepted 14 March 2022
Communicated by J.H. Evertse

Abstract

For integers $n, s, b_{0}, \ldots, b_{n}$ with $n \geq 3, s \geq 0,\left|b_{0}\right|=\left|b_{n}\right|=1$, let $G_{1}(x)=G_{1}(x, n, s):=$ $n!\sum_{j=0}^{n} b_{j}(j!)^{-1}\binom{n+s-j}{n-j} x^{j}$. For $n \geq 0$ and $0 \leq s \leq 92$ it is proved in Shorey and Sinha (2022) that, except for finitely many pairs $(n, s), G_{1}(x)=G_{1}(x, n, s)$ is either irreducible or linear factor times an irreducible polynomial. If $s \leq 30$, we determine here explicitly the set of pairs (n, s) in the above assertion. This implies a new proof of the result of Nair and Shorey (2015) that $G_{1}(x)$ is irreducible for $s \leq 22$. © 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Generalised Laguerre polynomials; Irreducibility; Primes; Valuations

1. Introduction

This is a continuation of [4]. Therefore we shall follow the notations of [4] but we shall recall here the key notations and key results from [4]. The generalised Laguerre polynomial of degree n with negative argument is

$$
L_{n}^{(\alpha)}(x)=\sum_{j=0}^{n} \frac{(\alpha+n) \ldots(\alpha+j+1)}{(n-j)!} \frac{(-x)^{j}}{j!}
$$

[^0]where α is negative. Then for $\alpha=-n-s-1$ where s is a non-negative integer, we have
$$
g(x)=g(x, n, s):=(-1)^{n} L_{n}^{(-n-s-1)}(x)=\sum_{j=0}^{n} a_{j} \frac{x^{j}}{j!}
$$
where $a_{j}=\binom{n+s-j}{n-j}$ for $0 \leq j \leq n$.
Thus $a_{n}=1$ and $a_{0}=\binom{n+s}{n}=\frac{(n+1) \ldots(n+s)}{s!}$ and
$$
G(x)=G(x, n, s):=\sum_{j=0}^{n} \pi_{j} \frac{x^{j}}{j!} \quad \text { where } \quad \pi_{j}=b_{j} a_{j}
$$
such that $b_{j} \in \mathbb{Z}$ for $0 \leq j \leq n$ with $\left|b_{0}\right|=1,\left|b_{n}\right|=1$. For $k \geq 1$ we say we have (n, k, s) if $G(x)=G(x, n, s)$ has a factor of degree k and we do not have (n, k, s) if $G(x)$ has no factor of degree k. Next we write
$$
g_{1}(x)=n!g(x), \quad G_{1}(x)=n!G(x) .
$$

Schur proved that $G_{1}(x)$ with $s=0$ is irreducible. Therefore we always assume that $s>0$.

2. Lemmas

In 1995, Filaseta [1, Lemma 2] gave the following lemma.
Lemma 1. Let k and l be integers with $k>l \geq 0$. Suppose that $h(x)=\sum_{j=0}^{n} b_{j} x^{j}$ and p prime such that $p \nmid b_{n}$ and $p \mid b_{j}$ for $0 \leq j<n-l$ and the right most edge of the Newton polygon for $h(x)$ with respect to p has slope less than $\frac{1}{k}$. Then for any $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with $\left|a_{0}\right|=\left|a_{n}\right|=1$, the polynomial $f(x)=\sum_{j=0}^{n} a_{j} b_{j} x^{j} \in \mathbb{Z}[x]$ cannot have a factor with degree in the interval $[l+1, k]$.

The next result is Lemma 1 from [4].

Lemma 2. Assume that $G_{1}(x)$ has a factor of degree 1. Then

$$
n \leq s^{\pi(s)} .
$$

Further we state the following result from [4].

Lemma 3. Let $n \geq 3$. Assume that $G_{1}(x)$ has a factor of degree $k \geq 2$. Then $s>92$ unless

$$
\begin{gathered}
(n, k, s) \in\{(4,2,7),(4,2,23),(9,2,19),(9,2,47),(16,2,14), \\
(16,2,34),(16,2,89),(9,3,47), \\
(16,3,19),(10,5,4)\}
\end{gathered}
$$

As an immediate consequence of Lemma 3, we derive the following result.
Lemma 4. Let $n \geq 3$ and $s \leq 92$. Except for finitely many triples

$$
\begin{gathered}
(n, k, s) \in\{(4,2,7),(4,2,23),(9,2,19),(9,2,47),(16,2,14), \\
(16,2,34),(16,2,89),(9,3,47), \\
(16,3,19),(10,5,4)\}
\end{gathered}
$$

$G_{1}(x)$ is either irreducible or

$$
\begin{equation*}
G_{1}(x)=(x-\alpha) H_{1}(x) \tag{1}
\end{equation*}
$$

for some uniquely determined $\alpha \in \mathbb{Z}$ and monic irreducible polynomial $H_{1}(x) \in \mathbb{Z}[x]$.

Proof. Let $s \leq 92$. Assume that $G_{1}(x)$ is reducible. Then we derive from Lemma 3 that either (n, k, s) belongs to the finite set stated in Lemma 3 or $G_{1}(x)$ has no factor of degree $k \geq 2$. Now the assertion follows immediately.

3. Irreducibility of $G_{1}(x, 2, s)$ for $s \in\{3,7,15\}$

We compute

$$
\begin{equation*}
G_{1}(x)=b_{2} x^{2}-2(1+s) b_{1} x+b_{0} \frac{(2+s)(1+s)}{2} \tag{2}
\end{equation*}
$$

where $\left|b_{0}\right|=\left|b_{2}\right|=1$. For the irreducibility of $G_{1}(x)$ it suffices to show that the polynomials

$$
x^{2} \pm 2(1+s) b_{1} x \pm \frac{(2+s)(1+s)}{2}
$$

are irreducible. We prove
Lemma 5. The polynomials (2) with $s=3$ and $s=15$ are irreducible for every $b_{1} \in \mathbb{Z}$. Also the polynomial (2) with $s=7$ is irreducible for every $b_{1} \in \mathbb{Z}$ except for $b_{1}=0$ where the polynomial is $x^{2}-36$.

Proof. The proof depends on a well known assertion that a quadratic polynomial is irreducible if and only if its discriminant is not a square. We consider $x^{2}-8 b_{1} x+10$ obtained from (2) by putting $b_{0}=1=b_{2}$. Suppose it is reducible. Then its discriminant $\left(8 b_{1}\right)^{2}-40=m^{2}$ for an integer $m \geq 0$. Thus $\left(8 b_{1}-m, 8 b_{1}+m\right) \in\{(1,40),(2,20),(4,10),(5,8)\}$ and then $16 b_{1} \in\{41,22,14,13\}$. This is not possible since none of $41,22,14,13$ is divisible by 16 . The assertion follows similarly for all other cases.

4. $G_{1}(x)$ divisible by a linear factor

For $s \leq 92$, we see from Lemma 4 that except for finitely many cases, $G_{1}(x)$ is either irreducible or divisible by a linear factor. In this section, we consider the case where $G_{1}(x)$ is divisible by a linear factor. Then we derive from Lemma 3 that n is bounded by a computable number depending only on s. If s is restricted to 30 , we prove a more precise assertion.

Theorem 1. Let $n \geq 2, s \leq 30$ and $G_{1}(x, 2,7) \neq x^{2}-36$. Assume that $G_{1}(x)=G_{1}(x, n, s)$ is divisible by a linear factor and

$$
\begin{equation*}
(n, k, s) \notin\{(4,2,7),(4,2,23),(9,2,19),(16,2,14),(16,3,19),(10,5,4)\} . \tag{3}
\end{equation*}
$$

Then $(n, s) \in X$ where

$$
\begin{aligned}
X=\{ & (6,3),(4,5),(8,11),(72,11),(3,15),(10,15),(4,15),(12,15),(8,15),(16,17), \\
& (272,17),(8,27),(16,29),(786600,25),(786600,26)\} .
\end{aligned}
$$

Proof. By definition, the assumption (3) is interpreted as $G_{1}(x)$ has no factor of degree 2 at $(n, s) \in\{(4,7),(4,23),(9,19),(16,14)\}$, no factor of degree 3 at $(n, s)=(16,19)$ and no factor of degree 5 at $(n, s)=(10,4)$. Assume that $G_{1}(x)$ is divisible by a linear factor. Then, as in [4, Lemma 2], we have

$$
\begin{equation*}
n=\prod_{p \mid n} p^{v_{p}(n)}=\prod_{p \leq s} p^{v_{p}(n)} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
p^{v_{p}(n)} \leq s \quad \text { for } \quad p \leq s \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p \left\lvert\, \frac{(n+1) \ldots(n+s)}{s!}\right. \text { for } p \mid n \text {. } \tag{6}
\end{equation*}
$$

(5) follows from (6) and [4, Lemma 2]. Denote by T the set of all pairs (n, s) satisfying (4), (5) and (6). By applying Lemma 1 with $l=0, k=1$ to all pairs $(n, s) \in T$, we check that Lemma 1 does not hold for the following set T_{1} of pairs (n, s) given by

$$
\begin{aligned}
& \{(2,3),(6,3),(4,5),(2,7),(4,7),(8,11),(72,11),(8,13), \\
& \quad(3,15),(2,15),(10,15),(4,15),(12,15), \\
& (8,15),(16,17),(272,17),(16,19),(6,23),(4,23),(16,23), \\
& \quad(16,24),(16,26),(8,27),(216,29), \\
& (16,19),(786600,25),(786600,26)\} .
\end{aligned}
$$

Denote by T_{2} the pairs (n, s) with $n=2$. These are excluded by Lemma 5. Denote by T_{3} the complement of $T_{2} \cup\{(3,15)\}$ in T_{1}. Then all the pairs $(n, s) \in T_{1}$ satisfy $n \geq 4$. Therefore we derive (1) uniquely for every $(n, s) \in T_{3}$ by Lemma 4. Denote by T_{4} the set obtained by applying Lemma 1 with $l=1$ and $k=\left[\frac{n}{2}\right]$ to $G_{1}(x)$ with $(n, s) \in T_{3}$. We calculate $T_{4}=X \backslash\{(3,15)\}$. Now the assertion of Theorem 1 follows immediately.

Now we give an application of Theorem 1 with $G_{1}(x)$ replaced by $g_{1}(x)$. We prove
Corollary 1. Let $s \leq 30$. If $g_{1}(x)$ is reducible, the

$$
(n, s) \in\{(786600,25),(786600,26)\} .
$$

This implies that $g_{1}(x)$ with $s \leq 24$ is irreducible which includes a new proof of a result of Nair and Shorey [3]. We refer to [4] for a complete account of results proved on the irreducibility of $g_{1}(x)$. The results of Hajir and its refinement by Nair and Shorey and Jindal, Laishram and Sarma depend on algebraic results of Hajir [2] on the Newton polygons. Our proof of Corollary 1 is new in the sense that it does not use the above results of Hajir [2] on Newton polygons.

Proof of Corollary 1. Let $s \leq 30$ and $G_{1}(x)=g_{1}(x)$ be reducible. We compute that $g_{1}(x)$ is irreducible for $(n, s) \in\{(4,7),(4,23),(9,19),(16,14),(16,19),(10,4)\}$. Now we derive from Lemma 3 that $g_{1}(x)$ is divisible by a linear factor. We verify that $g_{1}(x)$ is irreducible for $(n, s)=(2,7)$. Therefore, the assumptions of Theorem 1 with G_{1} replaced by g_{1} are satisfied. Hence we conclude $(n, s) \in X$ by Theorem 1 . Now we compute $g_{1}(x)$ with $(n, s) \in X$ are irreducible. This is a contradiction since $g_{1}(x)$ is divisible by a linear factor.

Acknowledgments

The first author is supported by INSA, India Senior Scientist award. The second author is supported by NBHM, India postdoctoral fellowship with grant number 0204/19/2017/R\& D-II/10383 at IISc Bangalore.

References

[1] M. Filaseta, The irreducibility of all but finitely many bessel polynomials, Acta Math. 174 (1995) 383-397.
[2] F. Hajir, Algebraic properties of a family of generalized laguerre polynomials, Canad. J. Math. 61 (2009) 583-603.
[3] G. Nair Saranya, T.N. Shorey, Irreducibility of Laguerre polynomial $L_{n}^{(-n-s-1)}(x)$, Indag. Math. (N.S.) 26 (2015) 615-625.
[4] T.N. Shorey, Sinha Sneh Bala, Extension of Laguerre polynomials with negative arguments, Indag. Math. (N.S.) (2022) https://doi.org/10.1016/j.indag.2022.02.006, (in press).

[^0]: * Corresponding author.

 E-mail addresses: shorey@math.iitb.ac.in (T.N. Shorey), snehasinha@iisc.ac.in (S.B. Sinha).

