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• Model explained high pollution events 
and revealed a hidden source of 
emission. 

• Prolonged high PM2.5 pollution event 
coincided with high mortality counts. 

• A surge in PM10 (690 μg/m3) was asso
ciated with large scale dust transport.  

A R T I C L E  I N F O   

Handling Editor: Volker Matthias  

Keywords: 
Particulate matter 
SAFAR 
WRF-Chem 
Emissions 
Lockdown 
COVID-19 

A B S T R A C T   

The world’s worst outbreak, the second COVID-19 wave, not only unleashed unprecedented devastation of 
human life, but also made an impact of lockdown in the Indian capital, New Delhi, in particulate matter (PM: 
PM2.5 and PM10) virtually ineffective during April to May 2021. The air quality remained not only unabated but 
also was marred by some unusual extreme pollution events. SAFAR-framework model simulations with different 
sensitivity experiments were conducted using the newly developed lockdown emission inventory to understand 
various processes responsible for these anomalies in PM. Model results well captured the magnitude and vari
ations of the observed PM before and after the lockdown but significantly underestimated their levels in the 
initial period of lockdown followed by the first high pollution event when the mortality counts were at their peak 
(~400 deaths/day). It is believed that an unaccounted emission source was playing a leading role after balancing 
off the impact of curtailed lockdown emissions. The model suggests that the unprecedented surge in PM10 
(690 μg/m3) on May 23, 2021, though Delhi was still under lockdown, was associated with large-scale dust 
transport originating from the north west part of India combined with the thunderstorm. The rainfall and local 
dust lifting played decisive roles in other unusual events. Obtained results and the proposed interpretation are 
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likely to enhance our understanding and envisaged to help policymakers to frame suitable strategies in such 
kinds of emergencies in the future.   

1. Introduction 

Ambient air pollution is closely linked to multiple adverse health 
problems and may leads to adverse economic impacts, thus dampening 
the Global Domestic Product (Pandey et al., 2020). Air pollution in mega 
cities poses a major challenge for the global environment (Molina et al., 
2020). Beig et al. (2018) reported that multiple emission sources led by 
transportation, domestic, and industrial categories, besides road dust 
and waste burning, contributes to pollution in the Indian megacity of 
Delhi. Chen et al. (2020a, 2020b) have recently highlighted the miti
gation pathways of PM2.5 and ozone in Delhi. While already struggling 
with air quality issues, Delhi was hit hard by the COVID-19 pandemic, 
the clinical disease caused by infection with the novel coronavirus 
SARS-CoV-2, which swept through countries around the world, making 
it a pandemic disease (Yadav et al., 2020) in early 2020. 

As the cases significantly reduced by January 2021, there was a sense 
of complacency in India with a public narrative that India had 
conquered COVID-19 as daily cases fell nearly 90% from the first wave 
peak. However, infection cases in India started rising again by March 
2021, and this time, Delhi was struck hard. The second wave was far 
deadlier than the first wave and cases and deaths continued to increase 
at an unprecedented pace until the end of May 2021. In April 2021, 
Delhi got overwhelmed by the rising number of COVID-19 cases and 
fatal-ities. On the ground, these numbers translate to heart-wrenching 
tragedy. The speed and scale of the outbreak suggested that India 
probably had an emerging variant of the virus. Genomic surveillance 
data show that the Delta variant was first identified in India. The Delta 
variant contributed to an overwhelming surge in Delhi (Singh et al., 
2021). To control the surge in cases, Delhi imposed a lockdown from 
19th March to 31st May 2021. There are many studies addressing air 
quality concerns with COVID-19 during the first wave of 2020 (Beig 
et al., 2020a, and references therein) but work assessing the 2nd wave of 
2021 in India in terms of air quality is sparse. Therefore, this study is an 
important contribution to the global knowledge of the impact of local 
lockdowns on air quality. 

As the second wave of the COVID-19 raged across the National 
Capital, Delhi, experts have warned that the COVID-19 is airborne and 
the low-temperature incomplete combustion of biofuel will have lethal 
effect as virus piggyback on aged carbon particles (Rathod and Beig, 
2021) and may further aggravate casualties. As both COVID-19 and air 
pollution predominantly affect the upper respiratory tract and lungs, it 
has become a matter of great concern for the Indian capital city of Delhi. 
Chen et al. (2020a) have recently highlighted the local characteristics of 
PM2.5 and its exposure in Delhi. However, unlike the 1st pandemic wave 
(Beig et al., 2020a), the levels of PM could not show any significant 
decline and on the contrary, several unusual high pollution episodes 
were witnessed. In the present work, the System of Air Quality and 
Weather Forecasting and Research (SAFAR)-Framework model com
bined with observations and trajectory analysis has been used to un
derstand the processes controlling the unusual features in the variability 
of most toxic air pollutants PM10 and PM2.5, under different regimes 
starting from the pre-lockdown to post-lockdown (unlock) period of 
March to June 2021. The unusual or high pollution events have been 
defined as the sudden surge or dip in particulate matter when PM mass 
concentration coupled with an unusually low or high ratio of 
PM2.5/PM10 is observed as compared to the prevailing trend before and 
after the episode. The most prominent emergency episodes have been 
examined and discussed further in detail. 

We examined the dominant processes among large-scale circulation, 
local meteorology and local emissions while COVID-19 lockdown was in 
force. 

2. Materials and methodology 

2.1. Study area and observations 

This study was carried out in one of the largest mega cities of the 
world, Delhi which is the capital of India and located at 28.61◦N, 
77.23◦E towards the Northern part of India as shown in Fig. 1, having a 
population of around 19 millions. Both summer and winter in Delhi 
experience extreme weather from an Indian climatological perspective 
when the temperature may rise to about 47 ◦C in summers and go down 
to about 2 ◦C in winter. Delhi is located at an elevation of 216 m above 
mean sea level. Delhi receives a moderate rainfall of about 553 mm 

Fig. 1. (The geographical map of India where the location of study area, Delhi 
national capital region (NCT) is marked, which is further zoomed to represent 
locations of 34 air quality monitoring stations in different micro-environments. 
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during the monsoon season which starts in late June and lasts until the 
end of September. 

This study used the data obtained from the largest monitoring 
network of Delhi comprising 34 online automatic air quality and 
weather monitoring station maintained by the Delhi Pollution Control 
Committee (https://www.dpcc.delhigovt.nic.in/indexdup.php, last 
visited 10th Dec 2021) of the Delhi Government and SAFAR, India’s first 
air quality forecasting framework of the Govt. of India and a pilot project 
of the World Meteorological Organization (WMO) (Beig et al., 2015). 
Locations of various stations in and around Delhi are shown in Fig. 1. 
The data obtained from the monitoring network are time-resolved and 
bin ned for 1-h intervals for further analysis to get the 24 h mean daily 
mass concentrations (in μg/m3). The observed daily levels of these 
pollutants in Delhi during the study period (1st March to June 30, 2021) 
are averaged across all stations spread in different micro-environments 
of Delhi. Averaging removes the inhomogeneity in the data sets and 
can best be considered as representative of the city air quality as per the 
WMO guidelines (Grimmond et al., 2014). The mass concentration of 
PM2.5 and PM10 was monitored continuously using online analyzers 
approved by the United States Environmental Protection Agency. 

These analyzers are based on the industry-proven principle of Beta- 
ray attenuation methodology (BAM-1020; Met One Instruments, Inc, 
USA), whose details are provided elsewhere (Beig et al., 2020a; Yadav 
et al., 2017) and hence not discussed here in detail. The instrument’s 
span calibration is verified hourly (Anand et al., 2019; Yadav et al., 
2019). In this work data was collected for the period from 1st March to 
30th June for the study years (2017–2019 and 2021). The rainfall (mm) 
has been measured using the Automatic Weather Stations (Anand et al., 
2019) which were co-located with each air pollution monitoring station. 
The data of mortality and infectious cases related to COVID-19 are taken 
from the Union Ministry of Health and Family Welfare (https://www. 
mygov.in/covid-19/, last visited July 15, 2021) portal of the Govern
ment of India. 

2.2. SAFAR-framework model 

The SAFAR-framework model is based on the Weather Research and 
Forecasting - Chemistry (WRF-Chem version 3.9; (Grell et al., 2005; 
Powers et al., 2017). The detailed set-up and methodology of this 
interactive high-resolution chemistry-transport model have been dis
cussed in several publications elsewhere (Beig et al., 2020b, 2021a, 
2021b). This model uses four nested domains with 45, 15, 5, and 
1.67 km resolution. Two outermost domains cover part of Europe and 
Asia with 195 (W-E) x 173 (N–S) grid cells, and India stretching from 
55.4◦E to 95◦E (258 grid cells), and 2.7◦N to 55.4◦N (270 grid cells). The 
third domain covers North India (273 × 258 grid cells), and the fourth 
and innermost domain covers Delhi and surrounding areas and contains 
69 × 75 grid cells. The dust emissions are simulated using the GOCART 
(Goddard Global Ozone Chemistry Aerosol Radiation and Transport) 
dust scheme (LeGrand et al., 2019). Dust emission from the erodible 
surface is calculated by the emission scheme (Ginoux et al., 2001). The 
MOSAIC scheme includes the chemistry of sea salt, soil (lumped in
organics), secondary inorganic aerosols (nitrate, sulfate and ammonium 
ions), carbonaceous aerosols (organic carbon and black carbon), and 
equilibrium between water vapor, four inorganic trace gases (NH3, 
H2SO4, HNO3, and HCl) with inorganic ions (nitrate, sulfate, NH3 and 
Cl). The dust mass was included in the other inorganics concentration. 
To simulate chemical parameters properly, we provided the latest 
anthropogenic emissions of gaseous pollutants for 3 outer domains from 
Emissions Database for Global Atmospheric Research-Hemispheric 
Transport of Air Pollution (EDGAR-HTAP) version 4.3 (Crippa et al., 
2018). The emission inventory of the inner most domain for PM (PM2.5, 
PM10) at a horizontal resolution of 1.67 km is taken from our earlier 
studies (Beig et al., 2018; Sahu et al., 2011) for the normal case. For the 
sensitivity simulations, provisions to use different scenarios are kept. 
The SAFAR-interactive model uses the newly developed lockdown 

emission inventory scenario as per the methodology described in detail 
by us earlier (Beig et al., 2021a) and is discussed briefly in the next 
section. The SAFAR-Framework model is routinely validated being an 
operation service (http://safar.tropmet.res.in, last accessed 10th 
December 2021) and also validated independently for normal as well 
as extreme pollution cases on numerous occasions by us earlier (Beig 
et al., 2019, 2020b, 2021b). The back trajectory analysis is done using 
the Hybrid Single-Particle Lagrangian Integrated Trajectory, Version 4 
model of NOAA-ARL (Draxler and Rolph, 2003) whose detailed meth
odology is discussed previously in the literature (http://www.arl.noaa. 
gov/ready/hysplit4.html, last accessed December 10, 2021). The anal
ysis was performed with the Global Data Assimilation (GDAS) dataset 
and the starting time of 23:00 h UTC, the altitude of 500 m AGL, a level 
where transport is likely to take place. 

2.3. Lockdown emission inventory 

The normal baseline gridded emission inventory along with detailed 
methodology as adopted in this work is discussed in many of our recent 
publications along with associated uncertainties elsewhere (Beig et al., 
2018, 2020a, 2021b; Sahu et al., 2011) and hence discussed here only 
briefly. To construct the emission scenario of the lockdown period of 
April to May 2021, the above-mentioned normal emissions are used as a 
base level. The activity data for 16 major/minor sectors are targeted 
which was rearranged into six major categories, namely, Transport, 
Power, Industry, Residential, Windblown dust (re-suspended dust) and 
rest others which includes many unattended sources like a brick kiln, 
crematorium, etc as shown in Figure S1 along with special distribution 
of normal and lockdown emissions (tons/month) for PM2.5 and PM10 
where the hot spot regions are visible. The percentage contribution of 
these major six sectors in Delhi is also included in the pie chart in 
Figure S1. The summary of the source-specific details of emissions of PM 
is tabulated in Table 1. 

In a normal case scenario (Beig et al., 2018, 2021b), the major 
contribution in PM2.5 is from the transport sector (41%) followed by 
windblown resuspended dust (21%) whereas for PM10, major source is 
windblown dust (46%) followed by the transport sector (18%). The total 
emissions from all sources under normal scenarios during the period 
from March to May were 6420 tons/month and 14,849 tons/month for 
PM2.5 and PM10 respectively (Table 1). This lockdown in India during 
2021 was not as strictly implemented as that of the first wave in 2020 
due to several practical constraints and medical emergency situations. 
India has a unique distinction where the majority of the urban slums still 
use household biofuel sources (wood, cow dung, etc.) for cooking. The 
household emission was unchanged even during the lockdown in India 
as it was related to livelihood. Given the lack of PM2.5 and PM10 emis
sions inventory data during the lockdown period, we devised an alter
native approach to estimate city-level emissions based on a confinement 
index (CI) (Le Qúeŕ et al., 2020) conceived to capture the extent to 
which different policies and strict directive affected emissions during the 
lockdown. This was done based on available socio-economic/industrial 
activity data like electric production/consumption pattern, industrial 
production, and various types of fossil fuel consumed directly from the 
disseminating source of fuel by various sectors collected from govern
ment authorities. At the same time, the data related to unorganized 
sectors like slums, street vendors, cooking activities, and small scale 
industrial activities were collected from local municipal authorities. 
Based on available information from authentic sources like government 
agencies, municipal corporations and other associated organizations 
(https://www.delhi.gov.in/; https:https://www.mohfw.gov.in/; https: 
//www.mohfw.gov.in/, last accessed in July 2021) and personal judg
ment, we have estimated the reduction in activities and corresponding % 
reduction in emissions during lockdown as compared to the normal case 
which are shown in the 3rd and 6th columns in Table 1. The overall 
estimated net emission present during the lockdown period for PM2.5 
was 3238 tons/month (51% of normal) and that of PM10 was 8599 
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Table 1 
Source emissions (Tons/month) of PM10 and PM2.5 for Normal Scenario and that of lockdown scenario of 2021 along with % reduction wrt normal case for the period 
19th March to May 31, 2021.  

Sources PM10 Emissions (Delhi)-2021 PM2.5 Emissions (Delhi)-2021 

Normal emissions 
(Tons/month) 

% Reduction in 
lockdown wrt normal 

Net emissions (lockdown) 
(Tons/month) 

Normal emissions 
(Tons/month) 

% Reduction in 
lockdown wrt normal 

Net emissions (lockdown) 
(Tons/month) 

Transport 2710 50 1356.49 2630 50 1315.74 
Industry 2100 80 432.89 1190 80 238.83 
Power 1230.5 0 1230.48 315.7 0 315.70 
Biofuel 296.5 0 296.50 190 0 189.93 
WB-Dust 6880 30 4815.16 1380 30 966.61 
Others 1560 70 466.99 700 70 211.17 
Total 14,840 42% 8598.50 6420 49% 3237.98  

Fig. 2. The time series of the mass concentration of PM10 and PM2.5 and the ratio (%) of PM2.5 to PM10 (PM ratio) during the period 1st March to June 30, 2021 are 
compared with the averaged levels of 2017–19 during the identical period. The daily cumulative rainfall and number of mortality counts due to COVID-19 in 2021 
are also shown. The specific extreme events (marked as 1 to 4) are shown as shaded area in the respective plots. 
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tons/month (58% of normal case). The change in PM emissions associ
ated with the confinement is informative in multiple ways. First, the 
changes in emissions are entirely due to a forced reduction in activity. 
The developed lockdown emission inventory is a quantitative indication 
of the potential limits that lockdown measures could deliver where 
consumption of fossil fuel and unchanged household emissions are the 
major factor influencing the outcome. However, due to the medical 
emergency situation, a number of vehicles and ambulances were pressed 
into service for commuting to hospitals and other medical services. 
Accounting all these confounding factors, we estimated that the fuel 
consumption reduced only about 50% of normal days during lockdown. 

The power grid was working on normal capacity. However, in
dustries were largely shut down due to absence of working staff but 
~20% of the total industries required for essential products and services 
were still functional based on the available information. Biofuel emis
sions remained almost unchanged in the lockdown scenario. The un
certainty in emission inventory mainly arises from the activity data and 
emission factors. Hence, the data collection source and uncertainty 
evaluation are strongly linked. In the present work, calculation of error 
propagation is done by critically following various step and by accom
modating different past studies as described in our recent publication in 
detail (Beig et al., 2021b) and also documented by other authors (Arora 
et al., 2013; Gurjar et al., 2004) for a better comparison and accuracy in 
analysis. The uncertainty quantifying is not an easy task as it requires 
continuous monitoring of emissions at the source point which is not 
practical in real conditions. Till date, no systematic approach for the 
identification of uncertainty is available (Beig et al., 2021b) and hence 
inventory could not be validated. Major factors of uncertainty are 
around 10 Beig et al. (2021b), The uncertainty in emission inventory 
mainly arises from the uncertainty in input data, mainly related to ac
tivity data and emission factors (Beig et al., 2021b). Monte Carlo anal
ysis is used for detailed category-by-category assessment of uncertainty, 
particularly where uncertainties are not distributed normally as per Beig 
et al. (2021b). We made an attempt to collect city specific micro-level 
activity data to reduce uncertainties associated with the data. Monte 
Carlo analysis is performed at the category level, for aggregations of 
categories or for the inventory as a whole. Calculation of error propa
gation is done by critically following the step and by accommodating 
different previous studies for a better comparison and accuracy in 
analysis; the past studies (Gurjar et al., 2004, Arora et al., 2013) are 
taken into account. Combined uncertainty is calculated by considering 
the emission factor and activity data uncertainty in original and lock
down periods. We have adopted region-specific emission factors vari
ability in processes producing emissions, variation in meteorological 
factors, methods and assumptions used to fill in knowledge gaps about 
emissions processes and estimated the uncertainty around 25–35%. 
Although the reduction estimate are based on various departments of 
Government which are quite accurate, there is a scope of marginal 
additional uncertainty. The past literature (Saikawa et al., 2017) reveals 
that the magnitude of the uncertainty is in emission inventory is in 
general high due to several factors as discussed above. Considering 
above aspects, we feel that we have estimated emissions reasonable well 
with lower level of uncertainty mainly due to usage of authentic gov
ernment sources as stated earlier in the section (which includes gov
ernment agencies and municipal corporations) for activity data 
accompanied by available country specific emission factors. 

3. Results and discussion 

3.1. Observations 

Fig. 2 shows the time series of the daily averaged concentrations of 
PM10 and PM2.5 (μg/m3), and the (%) of PM2.5 to PM10 ratio (hereafter 
will be called as ‘PM ratio’) for the period 1st March to June 30, 2021 
which are compared for the past 3 years averaged value (2017–2019) for 
the identical period (hereafter called as ‘reference level’). The year 

2020, the pandemic year, is deliberately omitted as it could have 
influenced the average. Also plotted are the daily cumulative rainfall 
(mm) and daily mortality counts for the same period in 2021. The 
lockdown period of 19th March to 31st May is marked by vertical lines 
in Fig. 2. It is pertinent to mention here that during this time of the year, 
under normal conditions, the PM ratio generally remains between 45 
and 50%. 

As the objective of the current study is to understand the variability 
during 2021, we will focus our attention on discussing 2021, in partic
ular the four unusual events represented as the shaded area and marked 
1 to 4 in Fig. 2. The event-1 was a high pollution event that occurred 
from 24th April to 2nd May when an unprecedented peak is observed; 
the event-2 was a low pollution event centered around 19th May; event- 
3 was an extreme pollution event that occurred with a sharp 1-day peak 
on 23rd May and the last event-4 (fourth) was again a high pollution 
episode on 8th June when a prominent peak in PM10 is noticed but not in 
PM2.5 making the PM ratio significantly low. During the normal period, 
prior to the imposition of lockdown on March 19, 2021, when anthro
pogenic emissions were as per the normal business-as-usual scenario 
(Beig et al., 2018). PM levels were consistently higher than the reference 
level. Immediately after the lockdown, a significant declining trend in 
PM was expected. However, despite of lockdown emission reduction in 
PM emissions (as discussed in an earlier section), no appreciable decline 
in PM was noticed as compared to reference years for about a month 
followed by the event-1, when a prolonged peak in PM mass concen
trations during the period 24th April to May 2, 2021 (depicted with 
shaded region) is observed. This period coincided with the time when a 
rapid surge in COVID-19 related mortality and morbidity was recorded 
as evident from Fig. 2(e). During the event-2, values of PM10 and PM2.5 
touched minimum levels (57 17 μg/m3 and 38 10 μg/m3 respectively) 
and the PM ratio was as high as 68% due to faster washout of coarser 
particles related to consistent rain as evident from rainfall data during 
this period. During the monsoon season when precipitation reaches to a 
certain level when the washout effect becomes active, even the impact of 
any other source of emissions also get minimized and that might be the 
reason for a declining trend during lockdown for the first time in the 
initial 2 weeks of May 2021 in the last week of lockdown. However, 
immediately after the end of the prolonged rain spell on 22nd May, there 
was sunshine for a day on 23rd May with thunderstorm leading to 
event-3 when the level of PM10 (684 ± 524 μg/m3) touched the emer
gency levels on 23rd May. There was a moderate increase in PM2.5 
(173 ± 150 μg/m3); hence, the PM ratio has gone down significantly to 
24%. This episode is further investigated using the model and discussed 
in detail in the next section of this paper. 

3.2. Model simulations and discussion 

We have performed 2 model sensitivity scenario runs using the 
SAFAR-Framework model for the period 1st March to June 30, 2021. 
Fig. 3 shows the time series of daily averaged PM10 and PM2.5 where the 
maroon line indicates time series obtained when the model accounted 
for normal case scenario (Table 1) even during lockdown period and the 
blue line indicates the result when the model is forced with reduced 
emissions during the lockdown period and normal emissions during 
unlock period. The model results shown in Fig. 3 are averaged over those 
grids where observed data were available. The vertical lines in the model 
plot are standard deviations from the mean. Model results are compared 
with observed data which are represented as a vertical bar along with 
standard deviation from the mean. The marking near the x-axis filled 
with dark yellow color represents the intense rainfall period whereas the 
yellow dot on 23rd May represents a dry day with sunshine as can also 
be confirmed from the rainfall plot of Fig. 2. Model results were well in 
agreement with observations before and after the lockdown periods 
(before 19th March and after 31st May) validating it well. However, the 
model simulated a significant reduction in both PM10 and PM2.5 when 
the lockdown scenario was used (blue) and results highly 
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underestimated observations. Observed levels of PM during lockdown 
period were found to be as high as model results with normal emission 
scenario in the initial period followed by the first prolonged peak during 
26th April to 1st May (event-1) when surprisingly observed values were 
found to be higher than the model simulated values even with normal 
emission scenario, particularly of PM2.5. Although model results show 
an increasing tendency at around 28th April during event-1, but the 
magnitude of the prolonged peak could not be captured by the model. 
The back trajectory ending on 28th April (Figure S2) indicates that 
winds were coming from the desert region of the North-West part of 
India towards Delhi but the wind speed was quite high which could have 
prevented particles to get accumulating. 

Hence, the dust flow could be one of the reasons for the peak 
observed around 28th April but it is not sufficient enough to fully 
explain the prolonged peak observed in particulate matter during event- 
1 as evident from model results in Fig. 3. This tends to suggest that a 
strong unaccounted source was not only offsetting the declined emis
sions of lockdown in the initial phase but also adding additional emis
sions during the entire period of event-1 as the model accounted for dust 
storm-related transport. This led us to believe that an unaccounted 
additional emissions source, rich in producing finer particles like biofuel 
or fossil fuel rather than the dust was active because the growth rate in 
PM2.5 levels was much higher with respect to PM10 as also confirmed 
from the PM ratio (~40–55%) in Fig. 2(d) which is relatively higher than 
the normal. During the lockdown, as traffic flow reduced, the transport- 
related fossil fuel emissions may not have played a significant role. 

Hence, this additional significantly high emission may be related to low- 
temperature combustion associated with biomass burning in crema
tories which were at peak during this period. Many unconfirmed news 
articles reported that the situation was so dire during the almost same 
period that Delhi crematories are overwhelmed which have never seen 
such a never-ending assembly line of deaths. The high mortality, very 
high mortality and peak mortality period are marked in Fig. 3a and b. As 
evident, the peak mortality period was directly coinciding with peak 
levels of PM2.5. The high levels of observed PM matching with normal 
emission simulated magnitude instead of lockdown simulated values, 
coincide with steep surge in infection counts. There are more than 50 
Crematorium’s of conventional open pyre type and very few of electrical 
and CNG type in Delhi. Hence, as per the Indian cremation rituals, dead 
bodies are mainly burned using bio-fuel. One of the largest and biggest 
cremation grounds of Delhi is Nigam Bodh Ghat. One study reported that 
the total amount of wood required for cremation is around 300–400 kg/ 
pyre for open pyre (Kumar et al., 2019). The crematoria flue gases 
contains a higher percentage of organic, inorganic matter and particu
late dust material. This additional biomass emission was so high and 
multiple pyres were used 24 × 7 for several days during peak that it 
superseded the impact of lockdown. This statement can be verified by 
looking at the direct correlation of mortality with the period of surge in 
PM when other extreme events (like a dust storm, etc) were not active. 
Also, due to a high number of patients needing hospitalization, many 
ambulances and private vehicles must be on road. Additionally, surplus 
vehicles due to heavy demand for oxygen cylinders were deployed for 

Fig. 3. SAFAR-Framework model simulated time series of PM2.5 and PM10 as per the normal and lockdown emission scenario which are compared with observed 
data for the period 1st March to June 30, 2021. The intense rain period, dry day in between rains, different intensity of mortality periods and rapid growth of 
infection period are also represented in this figure and marked with different symbols and cited in the figure. LD-Start and LD-End represent dates of ‘lockdown start’ 
and ‘lockdown end’ respectively. 
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service as an emergency measure. Hence this surge in PM levels might be 
related to a combination of biomass burning and fossil fuel emissions 
besides other possible emission sources. However, in absence of any 
reliable additional biomass burning emission data, we are unable to 
further investigate. The event-2 was due to consistent rainfall-related 

washout which is quite obvious and the trend is well simulated by the 
model in both the scenarios. It is noteworthy to mention that during the 
lockdown period, the impact of dominant natural events in PM was 
relatively well captured by the model during both event-2 and event-3 
albeit varying magnitudes. The peak in event-3 was unprecedented 
during this time of the year wherein PM10 peaked much faster than 
PM2.5 unlike event-1. We have investigated this event using the model in 
detail to understand the underlined processes. 

Fig. 4 shows the model simulated circulation pattern and the pro
cesses governing the dust particle movement during the event-3 (22nd 
− 25th May 2021) when the lockdown was in force. The period before 
and after 23rd May was marked by significant rainfall but there was 
sunshine for a day on 23rd May with heavy thunderstorms and winds 
started to blow from the North-North-West part of India with a rapid and 
heavy influx of dust leading to event-3. The synoptic analysis revealed 
that under the influence of a westerly disturbances (WD) and formation 
of the east-west trough in lower levels strong surface winds prevailed 
over Rajasthan and adjoining Pakistan region along with West 
Afghanistan region from 22nd May onwards and heavily accumulated 
the uplifted dust on 23rd May leading to an unprecedented increase in 
PM levels as evident from Fig. 4. The strong favorable upper-level winds 
are also evident from the analysis of the back trajectory ending on 23rd 
May (Figure S2). To understand the rapid buildup of additional PM10 
particles overnight, the model simulated spatial distribution and path
ways of dust clouds are shown at 00 h on 23rd May 2021 in Fig. 4. The 
daily average PM10 level has increased rapidly from less than 65 ± 32 
μg/m3 on 22nd May to 684 ± 524 μg/m3 overnight (Fig. 2). There was 
an increase in PM2.5 levels but the magnitude of increase was not as high 
as PM10. 

During this period, the PM ratio declined significantly (25%), indi
cating the highly dominant role of coarser particles. Thereafter, the 
impact of dust inflow has reduced significantly in the Delhi region and 
under the influence of Westerly disturbances, widespread rainfall star
ted again from 24th May onwards washing away the accumulated mass 
and levels of PM rapidly declined within 24hr. Thereafter as the rain 
continued, substantial improvement in PM levels was observed which 
continued even after the lockdown was lifted on 31st May. The last 
event-4 (depicted with light Indian red shaded region) in Fig. 3 has 
shown a different character than those in events-1 and 2. In this case, 
PM10 level has increased significantly but level of PM2.5 remained 
almost unchanged. This peak is reasonably well captured by the model 
when the dominance of coarser particles played a major role. The long- 
range transport of dust is ruled out as the back trajectory ending on 8th 
June (2, last panel) indicates that flow was from the southeast and not 
from the desert region as was the case in the previous event. This peak is 
attributed mainly due to the lifting of local dust due to very high local 
wind during a broken spell of rainfall under bright sunshine and warmer 
temperature. It dried out the surface dust quickly. Also the moisture 
supply from the southeast, triggered thunderstorms in Delhi locally to 
lift the dust on a local scale. With an increase in on-road traffic after the 
lockdown was lifted, high winds and dry atmosphere also started to lift 
the local dust leading to a peak in PM10 on 8th-9th June 2021 but this 
local scale event could not affect the abundance of finer particles 
(PM2.5). 

4. Conclusions 

This work investigated the variability in the particulate matter to 
understand the processes responsible for the same using the SAFAR- 
Framework model which accounted for lockdown emissions observed 
during the deadly 2nd wave of pandemic during April and May 2021 in 
Delhi. We developed the emission inventory of lockdown emissions. The 
overall estimated net emission present during the lockdown period for 
PM2.5 was 3238 tons/month (51% of normal) and that of PM10 was 8599 
tons/month (58% of normal). However, these estimated emissions are 
informative in multiple ways and not free from uncertainty which may 

Fig. 4. The SAFAR-Framework model simulated circulation pattern and the 
processes governing the dust particle movement during the event-3 (22nd 
− 25th May) when the lockdown was in force. The location of Delhi in the map 
is marked with circle. 
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range between 20 and 35%. The model reproduced well the impact of 
extreme pollution events in the trend of PM caused due to natural pro
cesses (events 2–4) but failed to reproduce some observed unusual fea
tures mainly related to an unaccounted hidden source of emission which 
was related to biomass burning at the crematorium in all likelihood. All 
four afore mentioned events had different characteristics and processes 
which havebeen explained in the current work. The model under
estimated the continued elevated levels of PM in the initial week after 
the lockdown followed by the prolonged peak of event-1, a period that 
coincided well with the peak mortality period. The hidden source of 
emission is believed to be associated with additional biofuel burning 
related to crematories whose emissions could not be accounted in the 
model in absence of reliable source specific data. The model also 
established that the North-westerly winds often brought dust particles 
from the desert region to Delhi leading to peaks in PM even during the 
lockdown. Both COVID-19 and the dust storms can cause overlapping 
respiratory symptoms; hence, a suitable strategy needs to be worked out 
during such emergencies. That can include the science-based coordi
nated effort to prioritize source-based mitigation planning. The model
ling effort to understand the correlation between the COVID-19, 
additional biomass emissions and natural episodes can enhance the 
current state of knowledge that could provide directions to future 
research benefitting both environmentalists and epidemiologists. 
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