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ABSTRACT 

 
Airborne particles finer than 2.5 microns (PM2.5) constitute a major public health risk in India. 

Therefore, extensive scientific studies must be conducted to assess the PM2.5 exposures of 
Indians and determine the “exposure-response function” specific to India. While Peninsular India 
includes three megacities with populations exceeding 10 million each, there are very few studies 
on air quality modelling in this region compared to North India. In this paper, the authors describe 
a Linear Mixed Effects (LME) model to estimate monthly-average PM2.5 concentrations at a 
spatial resolution of 1 km2 between 2016 and 2019 in the megacities of Bengaluru and Hyderabad 
with a total population of 23 million. This model is based on covariates such as aerosol optical 
depth (AOD), meteorological parameters, and Land-use-Land-cover (LULC) variables and is 
validated with extensive datasets from continuous and manual air quality monitoring stations 
through a 10-fold cross-validation process. The final LME model can explain more than 60 percent 
of the variation in the PM2.5 concentrations in Bengaluru and Hyderabad. This model is then used 
to predict the monthly-average grid-wise PM2.5 concentrations in more than 800 grids in each of 
these two cities to study the spatial and temporal patterns in PM2.5 concentrations between 2016 
and 2019. These spatiotemporal maps of PM2.5 concentration are critical to overcoming the 
misclassification of exposure and will form a crucial input to much-needed PM exposure-response 
studies in these two megacities. This paper can serve as a useful framework for similar studies by 
showing the way to bridge the gaps in the current air quality monitoring network in Peninsular 
India. 
 
Keywords: Aerosol Optical Depth (AOD), Linear Mixed Effects (LME) model, LULC classification, 
Exposure-response function, Spatiotemporal maps 
 

1 INTRODUCTION 
 

Fine particulate matter (PM2.5) pollution is a primary global public health concern. It is the 
fourth global leading risk factor for premature mortality and accounts for 4.14 million deaths 
globally (Health Effects Institute, 2020). Several air pollution exposure studies in the last three 
decades suggest that prolonged exposure to PM2.5 pollution is associated inter alia with respiratory 
and cardiovascular mortality and morbidity (Dockery et al., 1993; Krewski et al., 2005; Jerrett et 
al., 2005, 2009; Pope et al., 2002, 2009; Miller et al., 2007; Samet et al., 2000). However, the 
PM2.5 attributable mortality burden varies sharply across countries based on their population, per 
capita income and levels of PM2.5 exposure (Prabhakaran et al., 2020). According to the Global 
Burden of Diseases (GBD) estimates, almost 58% of the global PM2.5 attributable deaths occurred in 
Asia's two most populous countries, India and China which experience the highest PM2.5 attributable 
age-standardized death rates of 89–98 per lakh population (Health Effects Institute, 2020). 
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Studies conducted during India's nationwide lockdown to control the spread of the COVID-19 
pandemic have highlighted the reduction in the PM2.5 concentrations in several Indian cities 
(Lavanyaa and Srikanth, 2020; Singh et al., 2020; Mondal et al., 2021). Beig et al. (2020) have 
studied the PM2.5 concentrations measured in four megacities of India (Ahmedabad, Delhi, Mumbai, 
and Pune) during the unprecedented nationwide COVID-19-induced total lockdown starting from 
25 March 2020. During the first fortnight of this lockdown, these four megacities in India were 
not impacted by any major external sources of air pollution. This rare combination of circumstances 
enabled these researchers to conclude that the baseline levels of PM2.5 and other critical air 
pollutants in these four megacities exceed the WHO Air Quality Guideline (AQG) levels even 
though anthropogenic emissions were at a minimum due to the continued nationwide lockdown. 
In addition, Beig et al. (2020) have also quantified the increase in air pollutant concentrations due to 
external intrusions caused by changes in local meteorology in four cities (Ahmedabad, Delhi, 
Mumbai, and Pune). Therefore, the GBD-based exposure-response functions derived from cohort 
studies conducted in high-income countries with low ambient PM2.5 concentrations are inapplicable 
to India (Prabhakaran et al., 2020). 

Human exposure assessment plays a vital role in epidemiological studies to estimate the long- 
and short-term health risks associated with PM2.5 exposure. On the other hand, India has a sparse 
and non-uniform distribution of air quality monitoring stations (AQMS) even in urban areas and 
a near-absence of air pollution monitoring stations in rural areas (NGT, 2021; Prabhakaran et al., 
2020). Though, the Government of India launched the National Clean Air Program (NCAP) in non-
attainment cities to reduce the ambient PM10 concentrations by 20 to 30% by 2024 compared to 
the corresponding levels in 2017 (MoEFCC, 2020a). The non-attainment cities are those cities 
whose PM10 concentration over the past five-year period exceeded the National Ambient Air 
Quality Standards (NAAQS). To monitor the ambient air quality in all non-attainment cities, the 
Central Pollution Control Board (CPCB) states that there is a need for 800 continuous AQMS and 
1250 manual AQMS compared to the current availability of 193 continuous AQMS and 658 manual 
AQMS as of March 2021 (NGT, 2021). Therefore, as of March 2021, India has barely 50 percent 
of the number of AQMS needed to monitor air pollution only in the non-attainment cities, and 
most of the existing continuous AQMS are clustered in the National Capital Region (NCR) and the 
Indo-Gangetic Plain (IGP) (NGT, 2021). Further, while ambient air PM10 concentrations are monitored 
at 793 locations covering 344 cities, PM2.5 is measured only at 274 locations covering 132 cities 
(MoEFCC, 2020a). Therefore, the use of PM2.5 levels measured by a few AQMS as a surrogate for 
personal human exposure results in misclassification of exposure and causes bias in the exposure-
response relationship (Monn, 2001; Özkaynak et al., 2013; Shy et al., 1978). 

While the inadequate ground monitoring network creates a critical gap in air pollution-related 
epidemiological research in India, establishing such an air pollution monitoring network may be 
too expensive and time-consuming in a developing country like India. Over the past three decades, 
various methods such as GIS-based models, Land Use Regression (LUR) models, atmospheric 
dispersion models, and statistical models have been reported in the global literature to obtain 
robust air pollution exposure estimates. GIS-based models are heavily dependent on the density 
and distribution of AQMS (Beckerman et al., 2012; Salam et al., 2005; Jerrett et al., 2005; Kim et 
al., 2009). Therefore, several studies have used the chemical transport models to estimate the 
spatio-temporal PM2.5 levels in India (Ojha et al., 2020; Guttikunda et al., 2019). LUR modelling is 
a widely used exposure estimation method successfully applied in different regions, including 
North America (Gilbert et al., 2005; Ross et al., 2006), United Kingdom (Stedman et al., 1997; Briggs 
et al., 2000) and India (Sanchez et al., 2018). However, the LUR model captures only the spatial 
variation of the pollutant concentration and has limited application in estimating the Spatio-
temporal variation of the PM2.5 concentration. Several studies have used a statistical exposure 
modelling approach that utilizes the daily availability of satellite-derived Aerosol Optical Depth 
(AOD) at a high spatial resolution (1 km2) with global coverage (Ali et al., 2017; Sun et al., 2017). 
AOD is a measure of columnar aerosol loading in the atmosphere based on the extinction of 
electromagnetic radiation and acts as a potential proxy for the ground particulate matter 
concentration (NOAA, 2012). Kloog et al. (2011) and Just et al. (2015) have used satellite-based 
AOD measurements and spatio-temporal covariates to model daily PM2.5 concentrations in the 
Mid-Atlantic states and Mexico City using Linear Mixed Effects (LME) Model methodology. They 
showed that the model better performed than the other prevailing modelling approaches with 
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10- fold out-of-sample cross-validated (CV) R2 of 0.81 and 0.724 in the Mid-Atlantic states and 
Mexico City, respectively. Maheshwarkar and Sunder Raman (2021) have shown that the spatial 
variability in the PM2.5 concentration in Madhya Pradesh is reflected more accurately in the LME 
model than in the CTM based model of the same area. Several studies have used machine 
learning algorithms such as random forest, support vector machine, extreme gradient boosting, 
elastic net, and neural networks to improve prediction accuracy (Stafoggia et al., 2017; Di et al., 
2016; Mandal et al., 2020). 

In this paper, the authors have used the LME model based on satellite-derived AOD, geographical 
and meteorological covariates to predict the monthly PM2.5 concentration between January 2016 
and December 2019 at a spatial resolution of 1 km2 for the metropolitan regions of two cities in 
peninsular India—Bengaluru and Hyderabad. These cities have experienced rapid growth in land 
area as well as population during the last two decades due to the boom in the IT services sector 
in the last two decades. This boom has led to rapid increases in population, urban density, and 
number of vehicles. However, there are very few studies on the spatio-temporal changes in PM2.5 
concentrations in these two megacities of Peninsular India since most of the studies conducted 
in India are based on the National Capital Region and the Indo-Gangetic Plain.  

The study period of this research was set as 2016 since this was the first full year during which 
ambient air PM2.5 concentrations were first measured in these two megacities. The end of the 
study period was fixed as December 2019 to avoid the impacts of the unprecedented total 
lockdowns imposed in Bengaluru and Hyderabad for several weeks commencing 25 March 2020. 
Similarly, AQMS data recorded during 2021 are not considered since complete city-wide 
lockdowns to control the impacts of the 2nd wave of the COVID-19 pandemic were imposed in 
Bengaluru and Hyderabad starting in April and May 2021, respectively. 

 

2 METHODS 
 
2.1 Study Area 

The geographical, climatological, demographic and topographical parameters related to the 
study areas in the megacities of Bengaluru and Hyderabad are shown in Table 1. The study areas 
include the respective municipal regions in Bengaluru (711 km2) and Hyderabad (872 km2). Based 
on the spatial orientation and shape of the land area within the respective municipal boundaries, 
the city of Bengaluru was divided into 801 grids (1 km × 1 km) matching with the spatial resolution 
of the Moderate Resolution Imaging Spectroradiometer (MODIS) - Multi-Angle Implementation 
of Atmospheric Correction (MAIAC) AOD, while Hyderabad was divided into 873 grids. The study 
areas in Bengaluru and Hyderabad are shown in Fig. 1. 

Bengaluru and Hyderabad are located at different elevations (920 m and 545 m above Mean 
Sea Level, respectively). While Hyderabad remains warm throughout the year with maximum 
temperatures reaching 41 degrees centigrade, Bengaluru experiences moderate temperatures 
throughout the year with maximum temperatures limited to 34 degrees centigrade. In addition, 
Bengaluru experiences rain due to both southwest (SW) and northeast (NE) monsoons between 
June to September and October to November while Hyderabad receives most of the rainfall 
during the SW monsoon. 

Bengaluru and Hyderabad have undergone rapid urbanization resulting in increased infrastructural 
activities and increased PM2.5 pollution in the last couple of decades. However, the AQMS in 
Bengaluru and Hyderabad are primarily clustered in specific parts of the city. Therefore, attributing 
the PM2.5 exposure measured at these stations to people residing far from the AQMS would result 

 
Table 1. Key physical, geographical, and demographic information of Bengaluru and Hyderabad metropolitan areas. 

City 
Maximum  
Temperature 
(°C) 

Minimum  
Temperature 
(°C) 

Daily Average  
annual precipitation 
(mm) 

Population (Million) Decadal change 

2000 2010 2020 2000–2010 2010–2020 
Bengaluru 38 19 478.11 5.58 8.30 12.33 49% 48% 
Hyderabad 41 20 1.37 5.65 7.53 10.04 33% 33% 

Sources: IMD (2010–2020); Macrotrends (2022). 
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Fig. 1. Study areas in (a) Bengaluru and (b) Hyderabad. 

 
in exposure misclassification. This anomaly poses several difficulties in relating the personal 
exposure of the people to mortality and morbidity statistics related to chronic and acute illnesses. 
Therefore, the dose-response relationship between the health impact and personal exposure can 
be better established in developing countries like India with the help of a high-resolution spatio-
temporal PM2.5 exposure model.  
 
2.2 PM2.5 Data 

The ambient PM2.5 concentrations used in this study were collated from both manual and 
continuous AQMS established and maintained by the Government agencies such as the Central 
Pollution Control Board (CPCB), the Karnataka State Pollution Control Board (KSPCB) in Bengaluru 
and the Telangana State Pollution Control Board (TSPCB) in Hyderabad between 2016 and 2019. 
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In addition, we have collated daily PM2.5 concentration measurements from continuous AQMS 
established by the Indian Institute of Tropical Meteorology (IITM) under the Modelling Air 
Pollution and Networking (MAPAN) project. The continuous and manual AQMS installed by the 
CPCB, KSPCB, and TSPCB measure PM10 and PM2.5 concentration based on beta ray attenuation 
and gravimetric method, respectively (CPCB, 2013). The MAPAN stations (one each in Bengaluru 
and Hyderabad) measure PM2.5 using instruments calibrated based on U.S. EPA (Environmental 
Protection Agency) standards (Beig et al., 2021). The minimum detection limit of the continuous 
AQMS instrument used at these AQMS is 2 µg m–3. To ensure the quality of the collated daily PM2.5 

data, suitable data filters are applied during this study. PM2.5 measurements below 10 µg m–3 and 
not between µ* ± 3 σ* (*respective month-wise mean (µ) and standard deviation (σ)) were removed 
and considered missing (Mandal et al., 2020). In addition, PM2.5 measurements greater than PM10 
measurements for co-located stations were removed and considered missing. 

The monthly variability in the PM2.5 concentrations recorded by continuous AQMS in Bengaluru 
and Hyderabad during the year 2019 is shown in Table 2. The PM2.5/PM10 ratio provides information 
regarding the source of emission of particulates. While the annual PM2.5/PM10 ratio in Bengaluru 
during 2019 varied between 0.36 and 0.52 in different AQM stations, this ratio varied in a narrow 
range (0.41–0.47) in Hyderabad. Therefore, the PM2.5 and PM10 measurements in the co-located 
AQMS were used to predict PM2.5 from PM10 measurements in Hyderabad, wherever PM2.5 

 
Table 2. Monthly average PM2.5 concentration for all the real-time AQMS in Bengaluru and Hyderabad. 

(a) PM2.5 (µg m–3) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual  
Average 

2016 Bapuji Nagar 
             

BTM layout 66.9 67.8 61.8 56.4 47.5 23.6 17.5 12.5 17.0 33.2 22.1 
 

44.4 
BWSSB Kadabesanahalli 59.5 52.4 30.8 42.6 36.6 17.8 19.5 

 
27.1 34.7 44.7 22.2 39.6 

Hebbal 
Monitoring data is not available Hombegowda Nagar 

Jayanagar 
Peenya 75.9 89.8 85.4 40.2 33.2 29.2 21.3 25.6 37.9 61.2 53.4 49.0 52.8 
Silk Board 

             

2017 Bapuji Nagar Monitoring data is not available 
BTM layout Monitoring data is not available 31.1 

 
31.1 

BWSSB Kadabesanahalli 25.6 27.4 24.3 27.4 15.8 12.6 12.3 7.0 13.7 22.8 14.0 18.7 18.4 
Hebbal 

Monitoring data is not available Hombegowda Nagar 
Jayanagar 
Peenya 43.9 44.6 49.0 48.2 43.9 30.1 31.9 27.7 22.7 40.9 57.1 80.1 42.9 
Silk Board Monitoring data is not available 

2018 Bapuji Nagar Monitoring data is not available 19.2 21.8 26.3 31.3 41.7 48.6 59.3 38.0 
BTM layout 44.8 28.7 34.6 47.5 44.7 31.4 16.5 14.6 18.6 21.4 63.8 72.7 35.9 
BWSSB Kadabesanahalli 28.9 19.3 34.3 36.0 35.1 18.7 20.7 19.2 19.8 28.9 34.9 43.6 27.8 
Hebbal 

Monitoring data is not available 
9.0 13.3 11.6 19.2 32.3 40.0 58.0 24.0 

Hombegowda Nagar 
 

13.3 11.9 18.8 32.5 35.4 47.7 26.7 
Jayanagar 14.0 15.4 13.5 21.0 59.6 52.4 67.1 36.6 
Peenya 50.0 42.6 37.4 

   
25.6 25.0 32.6 39.3 32.8 43.8 36.0 

Silk Board Monitoring data is not available 33.8 26.8 30.1 36.7 37.6 41.5 51.4 37.4 
2019 Bapuji Nagar 59.6 48.6 46.0 42.2 45.8 35.7 27.5 21.5 21.1 28.9 45.6 34.1 38.0 

BTM layout 77.0 52.2 54.8 69.7 49.0 28.3 26.4 22.2 23.9 24.9 35.5 27.8 41.5 
BWSSB Kadabesanahalli 35.9 42.6 56.1 66.4 55.5 26.7 31.4 23.6 31.2 42.7 49.2 41.2 42.2 
Hebbal 59.6 47.0 42.2 39.7 32.4 16.3 11.6 9.5 15.9 22.8 40.1 38.2 31.2 
Hombegowda Nagar 49.2 40.7 40.8 34.7 30.9 15.4 12.0 10.9 9.9 11.2 35.4 29.8 27.3 
Jayanagar 59.2 45.8 42.1 35.7 30.6 16.0 9.7 9.9 17.0 27.8 45.3 37.2 31.2 
Peenya 47.3 42.2 65.4 62.9 37.8 31.5 28.3 20.2 21.8 21.9 26.2 38.1 37.4 
Silk Board 50.2 43.1 41.7 38.6 39.6 23.0 20.5 19.7 20.0 21.1 33.6 30.3 32.0 
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Table 2. (continued). 

(b) PM2.5 (µg m–3) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual  
Average  

2016 Bollaram Monitoring data is not available 68.4 89.2 93.5 83.6 
Central University Hyderabad 49.5 40.2 41.3 33.3 21.1 15.5 10.0 10.7 15.4 57.2 76.6 73.5 36.7 
ICRISAT Monitoring data is not available 49.6 94.3 87.0 76.7 
Pashamylaram 54.3 44.5 43.6 34.2 23.0 17.7 12.0 12.6 22.2 53.4 101.7 95.2 43.1 
Sanathnagar 108.9 77.7 60.8 53.8 51.1 46.7 44.3 10.4 18.7 44.6 73.0 86.7 55.2 
ZooPark Monitoring data is not available 

2017 Bollaram 79.4 74.6 58.4 75.0 53.0 25.0 29.4 34.9 38.6 63.8 50.5 71.7 54.6 
Central University Hyderabad 66.7 60.8 44.6 47.5 30.8 11.1 13.0 13.4 18.9 40.7 46.9 69.8 38.6 
ICRISAT 71.8 64.6 48.5 56.1 33.5 9.6 12.5 16.3 23.3 47.9 53.8 72.6 42.4 
Pashamylaram 74.3 64.9 50.0 57.0 37.2 14.8 16.9 19.5 27.9 51.3 58.9 77.0 45.8 
Sanathnagar 81.6 91.7 54.0 61.8 44.1 23.2 20.7 25.7 33.9 64.5 61.9 103.3 55.4 
ZooPark 84.3 77.7 60.6 70.9 44.2 17.5 14.2 17.2 28.2 59.5 61.0 98.9 53.6 

2018 Bollaram 74.7 53.2 62.6 43.7 39.3 27.5 22.3 26.7 42.6 63.0 53.7 67.4 48.0 
Central University Hyderabad 70.2 42.7 43.8 29.3 29.9 18.9 15.3 13.4 28.7 49.0 49.2 64.6 38.2 
ICRISAT 72.8 45.5 50.7 35.6 31.3 16.4 12.4 13.1 30.4 56.6 62.1 72.9 41.8 
Pashamylaram 81.3 48.2 51.9 35.5 34.3 19.5 13.3 13.9 32.9 61.8 69.7 79.4 45.4 
Sanathnagar 99.2 65.7 66.3 48.0 41.7 26.6 19.7 18.9 35.1 50.7 74.3 89.9 52.6 
ZooPark 96.0 57.6 56.6 37.2 35.5 22.7 19.5 21.2 50.6 76.8 76.9 95.5 54.4 

2019 Bollaram 77.5 55.6 50.0 39.0 50.7 31.2 24.4 25.6 23.3 37.3 78.5 73.2 47.2 
Central University Hyderabad 69.5 47.3 38.5 30.0 36.4 15.8 8.9 9.3 13.9 27.7 60.2 53.4 34.1 
ICRISAT 74.6 52.1 40.3 31.0 37.4 16.9 14.4 15.8 18.8 36.2 73.1 65.6 39.7 
Pashamylaram 83.7 62.1 51.7 32.5 45.2 22.1 14.7 19.0 18.5 31.8 82.0 71.7 44.7 
Sanathnagar 93.0 61.0 51.2 41.7 45.3 29.4 21.5 19.9 24.8 53.3 85.2 82.1 50.7 
ZooPark 103.7 70.7 59.9 53.3 64.0 27.3 16.9 16.6 25.9 49.1 92.2 88.2 55.4 

 
measurements were not available. In this case, the PM2.5 levels are derived from the measured 
PM10 concentration using the LME model, with meteorological variables as covariates and month 
of the year as a random effect. The calibration model is cross-validated using the ten-fold cross-
validation method (Stone, 1974). In the ten-fold cross-validation method, the entire dataset is 
randomly divided into ten equal parts, where the nine parts are used to train the calibration 
model, and the left-out part is used to test the model. The ten-fold CV R2 of the PM2.5 calibration 
model is 85.1% and the root mean squared error (RMSE) is 9.8 µg m–3 (Fig. 2; Table 3). This PM2.5 
calibration model is then used to predict the 9480 daily PM2.5 values from PM10 measurements 
in AQMS across Hyderabad where PM2.5 measurements are not available. In the next step, these  

 

 
Fig. 2. 10-fold cross-validated PM2.5 predictions from PM10 measurements in Hyderabad. 
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Table 3. PM2.5 calibration model validation parameters in Hyderabad. 

Year MPE (µg m–3) RMSE (µg m–3) RPE (%) 10-fold CV R2 (%) 
2015 0.073 6.7 17.6 90.1 
2016 0.013 9.3 19.4 89.1 
2017 –0.014 11.0 21.7 81.6 
2018 –0.031 9.5 20.1 83.2 
2019 0.019 10.6 23.9 83.0 
All 0.005 9.8 21.1 85.1 

 
derived PM2.5 values are added to the PM2.5 measurements database that is used to build the 
final LME model. However, this method is not followed in Bengaluru due to the wide range of 
PM2.5/PM10 ratios between different stations. This variation in the PM2.5/PM10 ratio in Bengaluru 
is mainly due to the variability in the sources of emission around air pollution monitoring stations 
located in different areas that has also been documented in a study conducted by CSTEP (2022a) 
in this city. Consequently, the datasets of monthly PM2.5 data used to develop the LME model 
had only 420 values in the case of Bengaluru and 1145 values in the case of Hyderabad. 
 
2.3 Aerosol Optical Depth 

MODIS is an instrument placed in the Terra and Aqua satellites launched by NASA that 
performs measurements in the visible to thermal infrared wavelengths. The local equatorial 
passing times of the Terra and Aqua satellites are 10.30 AM and 1.30 PM (Indian Standard Time), 
respectively. For this analysis, the daily MODIS AOD at 550 nm (AOD550) data is derived using the 
MAIAC algorithm (Lyapustin et al., 2018). The MAIAC algorithm is chosen since it has a relatively 
finer spatial resolution of 1 km2 and better agrees with AERONET stations than other retrieval 
algorithms. However, the AOD550 observations over Bengaluru and Hyderabad are not continuous 
due to intermittent cloud cover, particularly during the monsoon season. In the case of Bengaluru, 
the AOD550 observations between July and October are almost completely absent. To impute 
missing entries in the MAIAC-AOD database, it is calibrated against the global atmospheric reanalysis 
based AOD from MERRA-2 (Modern-Era Retrospective analysis for Research and Applications 
version 2) using the Goddard Earth Observing System Model (GEOS) (Gelaro et al., 2017). 
MERRA2 reanalysis data is available at a spatial resolution of 0.5° × 0.65° and 1-hour temporal 
frequency (Randles et al., 2017). The gaps in the MODIS AOD are computed using the LME model 
with MERRA 2 AOD and geographical coordinates (latitude and longitude) of the centroids of the 
grids as covariates. The day of the year (DOY) is used as a random effect. The model is applied 
for every year between 2016 and 2019. 

The year-wise R2 and RMSE for the MAIAC AOD calibration models for Bengaluru and Hyderabad 
are given in Table 4. The year-wise linear models between the predicted and observed MAIAC 
AOD values are shown in Figs. 3(a) and 3(b) for Bengaluru and Hyderabad, respectively. As shown 
in Figs. 3(a) and 3(b), the MAIAC AOD calibration LME models performed well for all the four 
years between 2016 and 2019, for both Bengaluru and Hyderabad. 

In this manner, the best-fit LME calibration models (one for each of the four years between 
2016 and 2019) between the MAIAC AOD550 observations and MERRA2 reanalysis AOD550 data 
with the month of the year as random effect were used to fill the gaps in the AOD data. The daily 
predicted MAIAC AOD550 are then averaged on a monthly basis for incorporation into the final 
LME model. 

 
Table 4. Year-wise MAIAC AOD550 calibration model results. 

Year 
Bengaluru Hyderabad 

RMSE R2 (%) RMSE R2 (%) 
2016 0.04 93.9 0.05 94.2 
2017 0.04 93.6 0.04 89.4 
2018 0.04 94.9 0.05 94.72 
2019 0.04 93.3 0.05 89.6 
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(a)  

(b)  

Fig. 3. Relationship between Predicted and Observed MAIAC AOD550 in (a) Bengaluru and 
(b) Hyderabad. 

 

2.4 Geographical Covariates 
2.4.1 Urban built-up 

The impact of increasing built-up area on urban air pollution is well documented in the literature 
(Gaigne et al., 2010). Therefore, the percentage of urban built-up area in each city is one of the 
critical predictor variables of the city's particulate pollution (Sarrat et al., 2006). To extract the 
percentage of urban built-up within each 1 km × 1 km grid in the Bengaluru and Hyderabad study 
areas, two Landsat-8 (Collection 1) images in each year (one each from pre-and post-monsoon 
seasons) between 2014 and 2019 were downloaded from the U.S. Geological Survey (USGS) 
portal (https://earthexplorer.usgs.gov/). The bands 2–7 ((Blue, Green, Red, NIR, SWIR I, II) were 
stacked using the Q-GIS platform (QGIS Documentation, 2021). The stacked raster image was 
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exported to the Google Earth Engine. The K-means clustering method was used to classify the 
image into 25 classes (Lloyd et al., 1982). Further, the classified raster image was exported to the 
QGIS platform and compared with the original satellite image to get the different class numbers 
with similar spectral signatures.  

In the case of Bengaluru, the classes with similar signatures were merged to form a combined 
class, leading to the classification of land use into four basic categories: urban built-up area, 
vegetated land, water bodies, and the barren land. However, in the case of Hyderabad, the merging 
of the similar signatures resulted in five final categories: urban built-up, vegetation, waterbody, 
fallow Land, and barren Land. It is noteworthy that the classified raster images of Hyderabad 
contained mixed pixels. Therefore, the reclassification of the raster image was done by overlaying 
the road network extracted from the Open Street maps portal (OpenStreetMap, 2021). While the 
satellite images of Hyderabad for 2015 and 2020 were classified using supervised classification 
in QGIS, the rest were classified using the K-means clustering method in the Google Earth Engine 
(Gorelick et al., 2017). Figs. 4(a) and 4(b) show the LULC classified images of Bengaluru and  

 
(a)  

(b)  

Fig. 4. Land Use Land Cover classified images of (a) Bengaluru and (b) Hyderabad in March 2019. 
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Hyderabad. Due to the 17% increase in the population of Bengaluru and a 12% increase in that 
of Hyderabad during the study period 2016–2019, Bengaluru and Hyderabad experienced 
increases in urban built-up areas of 12% and 11%, respectively (Macrotrends, 2022). The monthly 
increase in the built-up area in each grid is obtained by performing a cubic spline interpolation, 
assuming a gradual increase in the built-up area during the study period between 2015 and 2019. 
 
2.4.2 Road density 

The land use map for 2015 was obtained from the Bengaluru Developmental Authority (BDA), 
Karnataka, and the open street maps were used to extract the grid-wise road density in Bengaluru 
and Hyderabad respectively (BDA, 2015; OpenStreetMap, 2021). The road density is calculated 
as the sum of all the road lengths (primary, intermediary, tertiary) in the 1 km2 grid divided by the 
grid area. The grid-wise road density was calculated using the QGIS platform (QGIS Documentation, 
2021). 
 
2.5 Meteorological Covariates 

While the emission of pollutants is one of the key factors in the ambient concentrations of any 
pollutant, meteorological variables also interact with the pollutants via convection, advection, 
deposition, dispersion, and dilution. In this study, daily meteorological variables such as 
Temperature, Relative Humidity, Planetary Boundary Layer height, Surface Pressure, Wind Speed, 
and Wind direction are obtained from the Indian Monsoon Data Assimilation and Analysis (IMDAA) 
regional reanalysis data. This single-level IMDAA regional reanalysis data is maintained by the 
National Center for Medium-Range Weather Forecasting (NCMRWF) under the Ministry of Earth 
Sciences (MOES), Government of India (Rani et al., 2021). This reanalysis data has a spatial resolution 
of 12 km and a temporal resolution of one hour (Rani et al., 2021). Further, bilinear spatial 
interpolation was used on the daily IMDAA meteorological data files over Bengaluru and Hyderabad 
to obtain daily meteorological data at a spatial resolution of 1 km. The daily meteorological 
variables thus obtained were arithmetically averaged for each month. In the case of the planetary 
boundary layer (PBL) height, the monthly average of daily planetary boundary layer height 
between 6:00 AM and 6:00 PM IST is calculated. While the monthly wind speed was calculated 
using the scalar averages, the monthly wind direction was computed using vector averaging. 

 
2.6 Model Development 

As shown in Fig. 1, most of the AQMS in Bengaluru and Hyderabad are located near point or 
line emission sources. Since the PM2.5 measurements at these AQMS exhibit a right-skewed 
distribution, the natural log transformation is applied to the response variable 'PM2.5' to ensure 
the homoscedasticity and normality of the residuals (Kloog et al., 2011). Both geographical and 
meteorological variables are used in the model as covariates. Since the covariates that can enter, 
the model is screened using correlation and stepwise regression analysis, all the covariates 
considered for the model development are not included in the LME model. The correlations 
between PM2.5 concentrations and AOD are statistically significant at the 95% confidence level in 
Bengaluru and Hyderabad with Pearson correlation coefficients of 0.315 and 0.349, respectively. 
The predictor variables such as temperature, relative humidity, wind speed, planetary boundary 
layer height, surface pressure, and road density correlate better with PM2.5 measurements than 
any other predictor variables in Bengaluru and Hyderabad. Since several of the Spatio-temporal 
predictor variables used in the analysis have strong autocorrelation amongst themselves, including 
all the predictor variables in the model would result in a singular solution. Therefore, the predictor 
variables with the least autocorrelation are selected based on the stepwise regression method. 
The stepwise regression method is a statistical method that includes variables into the model 
until the R2 value reaches saturation, after which there is no incremental change in the R2

 with the 
inclusion of any more predictor variables (Kutner et al., 1983). Stepwise regression was performed 
between the log-transformed monthly average grid-wise PM2.5 concentration (response variable) 
and the corresponding Spatio-temporal predictor variables between 2016 and 2019 in both 
Bengaluru and Hyderabad. 

Several researchers have used each day of the study period as a random effect (Kloog et al., 
2011, 2014; Just et al., 2015). However, a major part of the AQMS data in Bengaluru and 
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Hyderabad is derived from manual monitoring stations where the readings are not available for 
each day of the year. Therefore, we used each of the 48 months between 2016 and 2019 to assess 
the significance of this random effect. In the next step of the analysis, the LME model was applied 
with monthly-average PM2.5 concentrations between 2016 and 2019 as the response variable and 
the predictor variables selected by the stepwise regression method in the previous step. The 
dummy months are assigned numerical values from 1 to 48 for the 48 months between January 
2016 and December 2019 to assess the presence (or absence) of a month-specific random effect. 
The presence of a month-specific random effect indicates that the relationship between PM2.5 
and the predictor variables changes from month to month (Gałecki and Burzykowski, 2013). In 
this study, the parameter representing each of the 48 months between January 2016 and 
December 2019 was found to have a statistically significant random effect (p-values of 0.000 and 
0.001 for the Bengaluru and Hyderabad datasets, respectively) on the PM2.5 concentrations. 

 
3 RESULTS AND DISCUSSION 
 
3.1 LME Model Results and Discussion 

The form of the final LME models relating the monthly-average PM2.5 concentration and the 
selected geographical and meteorological covariates are shown in Eqs. (1) and (2). 
 
Bengaluru 
logePM2.5(ij)~ (ui + β0) + β1AODj + β2RHj + β3PBLij + β4SPij + β5Road densityj + β6Built – upij + eij (1) 
 
Hyderabad 
logePM2.5(ij)~ (ui + β0) + β1AODj + β2RHj + β3WSij + β4PBLij + β5Built – upij + eij 
 (2) 
(ui)~ N [(0, ∑) 
eij~ N (0, σ) 
 
here, the PM2.5(i,j) is the PM2.5 concentrations of the ith month and jth AQMS location. Similarly, 
the AODij, RHij, PBLij, SPij, and WSij are Aerosol Optical Depth, Relative Humidity, Planetary 
Boundary Layer, Surface Pressure, Wind Speed, and Built-up area (%) on ith month and jth AQMS 
location. Road densityj represents the road density at every jth AQMS location. β0 and ui are the 
month specific fixed and random intercepts. ∑ denotes the variance covariance matrix of the 
random effect. 

The final LME model coefficients are shown in Tables 5(a) and 5(b) for Bengaluru and Hyderabad, 
respectively. AOD, relative humidity, planetary boundary layer height and built-up area percentage  

 
Table 5. Final LME model results.  

Predictor variables Coefficient P-value 
(a) Bengaluru 

Constant 33.842 0.000 
Relative Humidity (%) –0.051 0.000 
Planetary Boundary Layer Height (km) –1.094 0.003 
Aerosol Optical Depth 0.731 0.020 
Built-up Area (%) 0.970 0.000 
Surface Pressure (kPa) –0.285 0.000 
Road Density (/km) –0.012 0.000 

(b) Hyderabad 
Constant 7.033 0.000 
Wind Speed (m s–1) –0.017 0.000 
Built-up Area (%) 0.413 0.000 
Relative Humidity (%) –0.035 0.000 
Planetary Boundary Layer Height (km) –0.977 0.000 
Aerosol Optical Depth 0.600 0.009 
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are the common covariates selected for both the Bengaluru and Hyderabad LME models. While 
surface pressure and road density are also having a highly significant impact (p-values of 0.000) 
on the monthly PM2.5 concentrations in Bengaluru, wind speed has a highly significant impact in 
Hyderabad (p-value of 0.000). All covariates (except AOD) of the grid-level average PM2.5 
concentrations listed in Tables 5(a) and 5(b) are highly significant at the 99% confidence level, 
while AOD is statistically significant at 95% confidence level. 

The ten-fold CV final LME model diagnostics for Bengaluru and Hyderabad are shown in 
Tables 6(a) and 6(b), respectively. The RMSE, Mean Prediction Error (MPE) and Relative Prediction 
Error (RPE) of the final LME model for Bengaluru were 8.39 µg m–3, 6.4 µg m–3, and 21.4%, respectively. 
The corresponding values in the case of Hyderabad are 11.3 µg m–3, 8.2 µg m–3, and 25%, respectively. 
The ten-fold CV R2 values for Bengaluru and Hyderabad are 65.5% and 61.6%, respectively. The 
model validation parameters between the iterations of the 10-fold cross-validation procedure 
are consistent. The predicted versus measured values of PM2.5 concentrations derived from the 
ten-fold CV LME models and the corresponding 95% confidence intervals are shown in Figs. 5(a) 
and 5(b) for Bengaluru and Hyderabad, respectively. 

The cross-validated results of the model suggest that the final LME model can explain at least 
60% of the variability in the monthly-average PM2.5 concentrations in Bengaluru and Hyderabad. 
The grid-wise annual average PM2.5 concentrations between 2016 and 2019 are predicted using 
the predictor variables belonging to the individual grid cells of the study area in Bengaluru (Fig. 6(a)) 
and Hyderabad (Fig. 6(b)). As shown in Fig. 6(a), hotspots of PM2.5 concentration in Bengaluru are 
seen over the Peenya industrial area, the city railway station, the K.R. market, the Central Silk 
Board area, Whitefield, Hebbal, and Kalyan Nagar in all four years (2016–2019) irrespective of 
the seasons. Except for Peenya, the other hotspots are in areas witnessing dense traffic due to 
commercial activities. The south-eastern corners of Bengaluru have lesser PM2.5 pollution for all the 
years between 2016 and 2019 due to the higher vegetation cover coupled with lack of commercial 
activities (Figs. 4(a) and 6(a)). 

As shown in Table 2(a), the PM2.5 pollution levels recorded in the continuous AQMS in Bengaluru 
peaked during the months between December and February. In the case of Hyderabad, the PM2.5 
pollution peaked between November and February (Table 2(b)). Though the PM2.5 concentrations 
in most of the AQMS in Bengaluru comply with India's annual average National Ambient air 
Quality Standard (40 µg m–3) for PM2.5 concentration, the monthly average PM2.5 levels during 
the winter months are much higher than the annual NAAQ standard (Table 2(a)). As expected, the 
PM2.5 concentrations were low during the southwest monsoon period (June–September) in both 
Bengaluru and Hyderabad, and during the northeast monsoon period (October–November) in 
Bengaluru. Unlike Bengaluru, which experiences low PM2.5 levels for six months between June 
and November, Hyderabad experiences low PM2.5 levels only for four months (June–September) 
since the NE monsoon does not touch Hyderabad. 

As shown in Fig. 6(b), the city of Hyderabad has hotspots of PM2.5 pollution over the central parts 

 
Table 6. Final LME model validation metrics. 

Year 
(a) Bengaluru (10-fold cross-validated) 

MPE (µg m–3) RMSE (µg m–3) RPE (%) 
2016 7.95 10.27 21.58 
2017 4.93 6.53 16.19 
2018 7.67 9.53 23.97 
2019 5.71 7.29 22.21 
All 6.45 8.40 21.41 

Year 
(b) Hyderabad (10-fold cross-validated) 

MPE (µg m–3) RMSE (µg m–3) RPE (%) 
2016 8.26 11.28 26.08 
2017 8.57 11.22 23.40 
2018 8.20 10.73 22.80 
2019 8.00 12.01 28.22 
All 8.25 11.31 25.02 
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Fig. 5. Tenfold cross-validated PM2.5 levels versus Measured PM2.5 concentrations in (a) Bengaluru 
and (b) Hyderabad. 

 
around Charminar, Paradise station, Jubilee Hills, and Jeedimetla. In contrast, the north-western 
parts of Hyderabad experienced comparatively lesser PM2.5 concentration (25–30 µg m–3) 
compared to other parts of Hyderabad (Fig. 6(b)). As shown in Table 2(b), the highest PM2.5 levels 
in Hyderabad are recorded in the month of December compared to the corresponding values in 
other months.  

While a sharp change in PM2.5 concentrations is observable with change of seasons in Hyderabad, 
the monthly difference in PM2.5 levels is low in Bengaluru, except during the change in season 
from monsoon to winter (Tables 2(a) and 2(b)). In Bengaluru, the PM2.5 concentration declined 
between 2016 and 2019. This can be attributed to the major flyover and metro construction works 
that were taking place between 2012 and 2016 (Chaturvedi, 2012; Sastry, 2012; Mukherjee, 
2012; The New Indian Express, 2017). The decline in the contribution of construction dust to the 
overall PM2.5 concentrations in Bengaluru was also reported in two studies conducted by CSTEP 
firstly in 2015 and then in 2019 (CSTEP, 2022b; Guttikunda et al., 2019). 

The annual average PM2.5 concentration in Bengaluru declined from 40.8 µg m–3 in 2018 to 
33.2 µg m–3 in 2019. This sharp fall of 18.6% is also due to the steep fall of 36% in the annual 
average PM2.5 concentration recorded in the Information Technology Park Ltd. (ITPL) in Whitefield 
after the closure of Graphite India Ltd from February 2019 pursuant to the order of the National 
Green Tribunal (The Hindu, 2019). Four other AQMS in Bengaluru also recorded a decline in annual 
average PM2.5 concentrations ranging between 19% and 26% while some stations recorded a 
marginal increase. 

In the case of Hyderabad, the PM2.5 concentration were higher in 2016 and 2019 compared to 
2017 and 2018. While other factors may also be at play, the impact of the steep reduction (75%) 
in the total precipitation in Hyderabad during 2017 (246 mm) compared to that recorded in 2016 
(990 mm) is one of reasons for the average PM2.5 concentration recorded in Hyderabad in 2017 
being 10% higher than that in 2016 (IMD, 2010–2020). The increase in total precipitation from 
246 mm in 2017 to 607 mm in 2018 and 682 mm in 2019 has played a major role in reducing the 
average PM2.5 concentration in Hyderabad from 51.3 µg m–3 in 2017 to 48.8 µg m–3 and 42 µg m–3, 
respectively (IMD, 2010–2020). 
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Fig. 6(a). Spatiotemporal distribution of model-derived annual average PM2.5 concentrations in Bengaluru between 2016 and 
2019. 

 
All existing air pollution models in India use air quality data recorded by continuous AQMS 

only. Due to the paucity of continuous AQMS in Peninsular India even in the megacities, the 
ground-truthing carried out in earlier studies is inadequate to study the PM2.5 pollution in the 
megacities of this region (Gupta et al., 2020). As shown in Figs. 1(a) and 1(b), while the number 
of continuous AQMS in Bengaluru is more than in Hyderabad, PM2.5 levels were not recorded in 
most of these stations in 2016 and 2017. However, continuous AQMS are expensive, costing 
more than Rs.30 million to procure and install per station (MoEFCC, 2020b). Therefore, the final 
LME models developed for Bengaluru and Hyderabad in the present study have used the PM2.5 
concentrations recorded in the manual AQMS as well as the continuous AQMS. The extensive 
datasets on PM pollution in the megacities of Bengaluru and Hyderabad collated from a wide 
variety of sources (CPCB, KSPCB, TSPCB, and IITM) to develop LME models to estimate monthly 
average PM2.5 levels at a 1 km × 1 km grid level with a much higher level of performance compared 
to earlier studies is a major contribution of this study. 
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Fig. 6(b). Spatiotemporal distribution of model-derived annual average PM2.5 concentrations in Hyderabad between 2016 and 
2019. 

 

4 CONCLUSIONS 
 

Several PM pollution modeling studies have been conducted in India’s National Capital Region 
(NCR) and the Indo-Gangetic plain (IGP). However, only a handful of air pollution modeling studies 
are published for the megacities of Bengaluru and Hyderabad with a combined population of 
23 million. The population of these two cities have doubled in the last 20 years with consequent 
changes in land use-land cover, transportation infrastructure, etc.  

In this study, the monthly-average PM2.5 concentrations between 2016 and 2019 for 801 (1 km 
× 1 km) grids in Bengaluru and 873 grids in Hyderabad are derived using the LME model. The LME 
model shows a satisfactory performance with a ten-fold CV R2 of 65.5% and 61.6% for Bengaluru, 
and Hyderabad, respectively. This paper is the first to use the LME model for the megacities of 
Bengaluru and Hyderabad and successfully captures the spatial and temporal variability in the 
PM2.5 concentrations in both study areas. Therefore it is a valuable addition to the literature on 
air pollution research. 

Due to the competing priorities for public finance in a developing country like India, a robust 
geospatial model relating ambient air pollution with remote sensing and meteorological parameters 
and validated with both continuous and manual AQMS data will be useful to monitor PM2.5 
pollution levels by filling up the gaps in AQMS data. Therefore, such models are particularly useful 
for monitoring and control of ambient air pollution in the megacities of peninsular India.  

The LME models developed during this study indicate the importance of LULC changes and 
meteorological parameters in determining the ambient air PM concentrations in both megacities. 
Therefore, urban planners must take care to provide adequate green areas and public transportation 
(to reduce road density) as cities grow in population and size.  
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The grid-level PM2.5 concentrations estimated using this research methodology can help 
researchers overcome the misclassification of exposure to PM2.5 pollution in the megacities of 
Bengaluru and Hyderabad. As mortality and morbidity data for Indian cities are widely available 
every month, the PM2.5 estimates developed with this model can be used to correlate with the 
monthly mortality and morbidity statistics in Bengaluru and Hyderabad. Therefore, this method 
is particularly suitable for exposure-response studies that must be carried out in India to assess 
the efficacy of India’s Air Quality Standards. Ultimately, proliferation of such studies in other 
megacities is crucial to reduce mortality and morbidity due to air pollution-related diseases and 
the attainment of Sustainable Development Goals (esp. SDG 3.9). 
 

ACKNOWLEDGMENTS 
 

The authors are grateful to the Ministry of Earth Sciences (Grant number: MoES/16/15/2011-
RDEAS (NIAS)) for supporting this research. Besides, the first author is also thankful to the Manipal 
Academy of Higher Education (MAHE) for permitting her to conduct her Ph.D. dissertation 
research entitled, ‘Air Quality and Public Health: A Case Study in Bengaluru.’ The authors are also 
grateful to Dr. Poornima Prabhakaran and Dr. Siddhartha Mandal in the Centre for Environmental 
Health, Prof. Diwakar, ISRO Chair Professor at NIAS, and Prof. Venugopal in the Centre for 
Atmospheric Sciences at the Indian Institute of Science, for their valuable guidance during this 
study. We also acknowledge the timely provision of data by the Central Pollution Control Board 
and the State Pollution Control Boards in Karnataka and Telangana without which this study 
would not have been possible.  
 

REFERENCES 
 
Ali, M.A., Assiri, M., Dambul, R. (2017). Seasonal aerosol optical depth (AOD) variability using 

satellite data and its comparison over Saudi Arabia for the period 2002‒2013. Aerosol Air Qual 
Res. 17, 1267–1280. https://doi.org/10.4209/aaqr.2016.11.0492 

Bangalore Development Authority (BDA) (2015). Revised Master Plan for Bengaluru-2031 (Draft). 
Bangalore Development Authority. https://opencity.in/pages/bda-revised-master-plan-2031-
land-use-maps 

Beckerman, B.S., Jerrett, M., Finkelstein, M. (2012). The association between chronic exposure 
to traffic-related air pollution and ischemic heart disease. J. Toxicol. Environ. Health Part A 75, 
402–411. https://doi.org/10.1080/15287394.2012.670899 

Beig, G., George, M.P., Sahu, S.K., Rathod, A., Singh, S., Dole, S., Murthy, B.S., Latha, R., Tikle, S., 
Trimbake, H.K., Shinde, R. (2020). Towards baseline air pollution under COVID-19: Implication 
for chronic health and policy research for Delhi, India. Curr. Sci. 119, 1178–1184. https://www.
currentscience.ac.in/Volumes/119/07/1178.pdf 

Beig, G., Sahu, S.K., Anand, V., Bano, S., Maji, S., Rathod, A., Korhale, N., Sobhana, S.B., Parkhi, N., 
Mangaraj, P., Srinivas, R., Peshin, S.K., Singh, S., Shinde, R., Trimbake, H.K. (2021). India’s Maiden 
air quality forecasting framework for megacities of divergent environments: The SAFAR-project. 
Environ. Modell. Software 145, 105204. https://doi.org/10.1016/j.envsoft.2021.105204 

Briggs, D.J., de Hoogh, C., Gulliver, J., Wills, J., Elliott, P., Kingham, S., Smallbone, K. (2000). A 
regression-based method for mapping traffic-related air pollution: Application and testing in 
four contrasting urban environments. Sci Total Environ. 253, 151–167. https://doi.org/10.1016/
S0048-9697(00)00429-0 

Center for Study of Science, Technology and Policy (CSTEP) (2022a). Source Apportionment Study 
for Bengaluru. (CSTEP-RR-2022-05). https://www.cstep.in/publications-details.php?id=1988 

Center for Study of Science, Technology and Policy (CSTEP) (2022b). Emission inventory and 
pollution reduction strategies for Bengaluru. (CSTEP-RR-2022-4). https://www.cstep.in/
publications-details.php?id=1985 

Central Pollution Control Board (CPCB) (2013). Guidelines for the Measurement of Ambient Air 
Pollutants, Vol 1 and Vol 2. National Ambient Air Quality Series: NAAQMS/36/2012-13. Central 
Pollution Control Board, Delhi, India. https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0Rmls
ZXMvMjdfMTQ1ODExMDQyNl9OZXdJdGVtXzE5Nl9OQUFRTVNfVm9sdW1lLUkucGRm 

https://doi.org/10.4209/aaqr.220110
https://aaqr.org/
https://doi.org/10.4209/aaqr.2016.11.0492
https://opencity.in/pages/bda-revised-master-plan-2031-land-use-maps
https://opencity.in/pages/bda-revised-master-plan-2031-land-use-maps
https://doi.org/10.1080/15287394.2012.670899
https://www.currentscience.ac.in/Volumes/119/07/1178.pdf
https://www.currentscience.ac.in/Volumes/119/07/1178.pdf
https://doi.org/10.1016/j.envsoft.2021.105204
https://doi.org/10.1016/%E2%80%8BS0048-9697(00)00429-0
https://doi.org/10.1016/%E2%80%8BS0048-9697(00)00429-0
https://www.cstep.in/publications-details.php?id=1988
https://www.cstep.in/publications-details.php?id=1985
https://www.cstep.in/publications-details.php?id=1985
https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMjdfMTQ1ODExMDQyNl9OZXdJdGVtXzE5Nl9OQUFRTVNfVm9sdW1lLUkucGRm
https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMjdfMTQ1ODExMDQyNl9OZXdJdGVtXzE5Nl9OQUFRTVNfVm9sdW1lLUkucGRm


 ORIGINAL RESEARCH 
Special Issue on Air Pollution and its Impact in South and Southeast Asia (III) https://doi.org/10.4209/aaqr.220110 

Aerosol and Air Quality Research | https://aaqr.org 17 of 20 Volume 22 | Issue 7 | 220110 

Chaturvedi, A. (2012). Mysore road flyover to open by sept-end. Bangalore Mirror. 
https://bangaloremirror.indiatimes.com/bangalore/others/mysore-road-flyover-to-open-by-
sept-end/articleshow/21315949.cms 

Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., Schwartz, J. (2016). Assessing PM2.5 exposures 
with high spatiotemporal resolution across the continental United States. Environ. Sci. 
Technol. 50, 4712–4721. https://doi.org/10.1021/acs.est.5b06121 

Dockery, D.W., Pope, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., Speizer, F.E. 
(1993). An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 
329, 1753–1759. https://doi.org/10.1056/NEJM199312093292401 

Gaigne, C., Riou, S., Thisse, J. (2010). Are Compact Cities Environmentally Friendly? GATE (Groupe 
D'Analyse et de Théorie Èconomique) Working Paper No. 1001. https://doi.org/10.2139/
ssrn.1553776 

Gałecki, A., Burzykowski, T. (2013). Linear Mixed-Effects Models Using R. Springer New York, New 
York, NY. https://doi.org/10.1007/978-1-4614-3900-4 

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, 
A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, 
V., Conaty, A., da Silva, A.M., Gu, W., Kim, G.K., et al. (2017). The Modern-Era Retrospective 
analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454. 
https://doi.org/10.1175/JCLI-D-16-0758.1 

Gilbert, N.L., Goldberg, M.S., Beckerman, B., Brook, J.R., Jerrett, M. (2005). Assessing spatial 
variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use regression model. J. 
Air Waste Manage. Assoc. 55, 1059–1063. https://doi.org/10.1080/10473289.2005.10464708 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. (2017). Google Earth 
Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. 
https://doi.org/10.1016/j.rse.2017.06.031 

Gupta, A., Kant, Y., Mitra, D., Chauhan, P. (2020). Spatio-temporal distribution of INSAT-3D AOD 
derived particulate matter concentration over India. Atmos. Pollut. Res. 12, 159–172. 
https://doi.org/10.1016/j.apr.2020.08.031 

Guttikunda, S.K., Nishadh, K.A., Gota, S., Singh, P., Chanda, A., Jawahar, P., Asundi, J. (2019). Air 
quality, emissions, and source contributions analysis for the Greater Bengaluru region of India. 
Atmos. Pollut. Res. 10, 941–953. https://doi.org/10.1016/j.apr.2019.01.002 

Health Effects Institute (2020). State of Global Air 2020. Special Report. Health Effects Institute, 
Boston. 

Indian Meteorological Department (IMD) (2010–2020). https://dsp.imdpune.gov.in/ 
Jerrett, M., Burnett, R.T., Ma, R. (2005). Spatial analysis of air pollution and mortality in Los 

Angeles. Epidemiology 16, 727–736. https://doi.org/10.1097/01.ede.0000181630.15826.7d 
Jerrett, M., Burnett, R.T., Pope, C.A., Ito, K., Thurston, G., Krewski, D., Shi, Y., Calle, E., Thun, M. 

(2009). Long-term ozone exposure and mortality. N. Engl. J. Med. 360, 1085–1095. 
https://doi.org/10.1056/NEJMoa0803894 

Just, A.C., Wright, R.O., Schwartz, J., Coull, B.A., Baccarelli, A.A., Tellez-Rojo, M.M., Moody, E., 
Wang, Y., Lyapustin, A., Kloog, I. (2015). Using high-resolution satellite aerosol optical depth to 
estimate daily PM2.5 geographical distribution in Mexico city. Environ. Sci. Technol. 49, 8576–
8584. https://doi.org/10.1021/acs.est.5b00859 

Kim, S.Y., Sheppard, L., Kim, H. (2009). Health effects of long-term air pollution: Influence of 
exposure prediction methods. Epidemiology 20, 442–450. https://doi.org/10.1097/EDE.
0b013e31819e4331 

Kloog, I., Koutrakis, P., Coull, B.A., Lee, H.J., Schwartz, J. (2011). Assessing temporally and spatially 
resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth 
measurements. Atmos. Environ. 45, 6267–6275. https://doi.org/10.1016/j.atmosenv.2011.08.066 

Kloog, I., Chudnovsky, A.A., Just, A.C., Nordio, F., Koutrakis, P., Coull, B.A., Lyapustin, A., Wang, 
Y., Schwartz, J. (2014). A new hybrid spatio-temporal model for estimating daily multi-year 
PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. 
Atmos. Environ. 95, 581–590. https://doi.org/10.1016/j.atmosenv.2014.07.014 

Krewski, D., Burnett, R.T., Goldberg, M., Hoover, K., Siemiatycki, J., Abrahamowicz, M., Villeneuve, 
P.J., White, W. (2005). Reanalysis of the harvard six cities study, Part II: Sensitivity analysis. 
Inhalation Toxicol. 17, 343–353. https://doi.org/10.1080/08958370590929439 

https://doi.org/10.4209/aaqr.220110
https://aaqr.org/
https://bangaloremirror.indiatimes.com/bangalore/others/mysore-road-flyover-to-open-by-sept-end/articleshow/21315949.cms
https://bangaloremirror.indiatimes.com/bangalore/others/mysore-road-flyover-to-open-by-sept-end/articleshow/21315949.cms
https://doi.org/10.1021/acs.est.5b06121
https://doi.org/10.1056/NEJM199312093292401
https://doi.org/10.2139/ssrn.1553776
https://doi.org/10.2139/ssrn.1553776
https://doi.org/10.1007/978-1-4614-3900-4
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1080/10473289.2005.10464708
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.apr.2020.08.031
https://doi.org/10.1016/j.apr.2019.01.002
https://dsp.imdpune.gov.in/
https://doi.org/10.1097/01.ede.0000181630.15826.7d
https://doi.org/10.1056/NEJMoa0803894
https://doi.org/10.1021/acs.est.5b00859
https://doi.org/10.1097/EDE.0b013e31819e4331
https://doi.org/10.1097/EDE.0b013e31819e4331
https://doi.org/10.1016/j.atmosenv.2011.08.066
https://doi.org/10.1016/j.atmosenv.2014.07.014
https://doi.org/10.1080/08958370590929439


 ORIGINAL RESEARCH 
Special Issue on Air Pollution and its Impact in South and Southeast Asia (III) https://doi.org/10.4209/aaqr.220110 

Aerosol and Air Quality Research | https://aaqr.org 18 of 20 Volume 22 | Issue 7 | 220110 

Kutner, M.H., Nachtsheim, C.J., Neter, J. (1983). Applied Linear Regression Models. 4th Edition. 
McGraw-Hill Irwin Publication. New York. 

Lavanyaa, V.P., Srikanth, R. (2020). Air quality in Bengaluru improves significantly post the 
lockdown. https://www.thehindubusinessline.com/opinion/air-quality-in-bengaluru-improves-
significantly-post-the-lockdown/article31516048.ece 

Lloyd, S.P. (1982). Least squares quantification in PCM. IEEE Trans. Inf. Theory 28, 129–137. 
https://doi.org/10.1109/TIT.1982.1056489 

Lyapustin, A., Wang, Y., Korkin, S., Huang, D. (2018). MODIS collection 6 MAIAC algorithm. Atmos. 
Meas. Tech. 11, 5741–5765. https://doi.org/10.5194/amt-11-5741-2018 

Macrotrends (2022). https://www.macrotrends.net/countries/IND/india/population 
Maheshwarkar, P., Sunder Raman, R. (2021). Population exposure across central India to PM2.5 

derived using remotely sensed products in a three-stage statistical model. Sci. Rep. 11, 544. 
https://doi.org/10.1038/s41598-020-79229-7 

Mandal, S., Madhipatla, K.K., Guttikunda, S., Kloog, I., Prabhakaran, D., Schwartz, J.D. (2020). 
Ensemble averaging based assessment of spatiotemporal variations in ambient PM2.5 
concentrations over Delhi, India, during 2010–2016. Atmos Environ. 224, 117309. https://doi.org/
10.1016/j.atmosenv.2020.117309 

Miller, K.A., Siscovick, D.S., Sheppard, L., Shepherd, K., Sullivan, J.H., Anderson, G.L., Kaufman, 
J.D. (2007). Long-Term Exposure to Air Pollution and Incidence of Cardiovascular Events in 
Women. N. Engl. J. Med. 356, 447–458. https://doi.org/10.1056/NEJMoa054409 

Ministry of Environment, Forest and Climate Change (MoEFCC) (2020a). Continuous ambient air 
quality monitoring stations. Reply given by Hon Minister of Environment, Forest and Climate 
Change to question no. 4514 in the Lok Sabha on 20 March, 2020. http://164.100.24.220/
loksabhaquestions/annex/173/AU4514.pdf 

Ministry of Environment, Forest and Climate Change (MoEFCC) (2020b). Most polluted cities. 
Reply given by Hon Minister of Environment, Forest and Climate Change to question no. 973 
in the Lok Sabha on 18 September, 2020. http://164.100.24.220/loksabhaquestions/annex/
174/AU973.pdf 

Mondal, A., Sharma, S.K., Mandal, T.K., Girach, I., Ojha, N. (2021). Frequency distribution of 
pollutant concentrations over Indian megacities impacted by the COVID-19 lockdown. Environ. 
Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-16874-z 

Monn, C. (2001). Exposure assessment of air pollutants: a review on spatial heterogeneity and 
indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and 
ozone. Atmos Environ. 35, 1–32. https://doi.org/10.1016/S1352-2310(00)00330-7 

Mukherjee, S. (2012). Whitefield is the most polluted area in Bangalore. https://timesofindia.
indiatimes.com/city/bengaluru/Whitefield-is-most-polluted-area-in-Bangalore/articleshow/
12000809.cms 

National Green Tribunal (NGT) (2021). Hearing on Original Application No. 681/2018, (With reports 
dated 05.04.2021 and 05.02.2021), Item No. 05. https://greentribunal.gov.in/gen_pdf_test.
php?filepath=L25ndF9kb2N1bWVudHMvbmd0L2Nhc2Vkb2MvanVkZ2VtZW50cy9ERUxISS8y
MDIxLTA0LTA4LzE2MTgzODgzNjkxNjI3OTgyMzU2MDc2YTU5MTdjNWQ1LnBkZg== 

National Oceanic and Atmospheric Administration (NOAA) (2012). GOES-R Advanced Baseline 
Imager (ABI) Algorithm Theoretical Basis Document for Suspended Matter/Aerosol Optical Depth 
and Aerosol Size Parameter. https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/AOD.pdf 

Ojha, N., Sharma, A., Kumar, M., Girach, I., Ansari, T.U., Sharma, S.K., Singh, N., Pozzer, A., 
Gunthe, S.S. (2020). On the widespread enhancement in fine particulate matter across the 
Indo-Gangetic Plain towards winter. Sci. Rep. 10, 5862. https://doi.org/10.1038/s41598-020-
62710-8 

OpenStreetMap (2021). https://www.openstreetmap.org/#map=11/17.4325/78.4293 
Özkaynak, H., Baxter, L.K., Dionisio, K.L., Burke, J. (2013). Air pollution exposure prediction 

approaches used in air pollution epidemiology studies. J. Exposure Sci. Environ. Epidemiol. 23, 
566–572. https://doi.org/10.1038/jes.2013.15 

Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D. (2002). Lung 
cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. 
JAMA 287, 1132–1141. https://doi.org/10.1001/jama.287.9.1132 

Pope III, C.A., Ezzati, M., Dockery, D.W. (2009). Fine-particulate air pollution and life expectancy 

https://doi.org/10.4209/aaqr.220110
https://aaqr.org/
https://www.thehindubusinessline.com/opinion/air-quality-in-bengaluru-improves-significantly-post-the-lockdown/article31516048.ece
https://www.thehindubusinessline.com/opinion/air-quality-in-bengaluru-improves-significantly-post-the-lockdown/article31516048.ece
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.5194/amt-11-5741-2018
https://www.macrotrends.net/countries/IND/india/population
https://doi.org/10.1038/s41598-020-79229-7
https://doi.org/10.1016/j.atmosenv.2020.117309
https://doi.org/10.1016/j.atmosenv.2020.117309
https://doi.org/10.1056/NEJMoa054409
http://164.100.24.220/loksabhaquestions/annex/173/AU4514.pdf
http://164.100.24.220/loksabhaquestions/annex/173/AU4514.pdf
http://164.100.24.220/loksabhaquestions/annex/174/AU973.pdf
http://164.100.24.220/loksabhaquestions/annex/174/AU973.pdf
https://doi.org/10.1007/s11356-021-16874-z
https://doi.org/10.1016/S1352-2310(00)00330-7
https://timesofindia.indiatimes.com/city/bengaluru/Whitefield-is-most-polluted-area-in-Bangalore/articleshow/12000809.cms
https://timesofindia.indiatimes.com/city/bengaluru/Whitefield-is-most-polluted-area-in-Bangalore/articleshow/12000809.cms
https://timesofindia.indiatimes.com/city/bengaluru/Whitefield-is-most-polluted-area-in-Bangalore/articleshow/12000809.cms
https://greentribunal.gov.in/gen_pdf_test.php?filepath=L25ndF9kb2N1bWVudHMvbmd0L2Nhc2Vkb2MvanVkZ2VtZW50cy9ERUxISS8yMDIxLTA0LTA4LzE2MTgzODgzNjkxNjI3OTgyMzU2MDc2YTU5MTdjNWQ1LnBkZg==
https://greentribunal.gov.in/gen_pdf_test.php?filepath=L25ndF9kb2N1bWVudHMvbmd0L2Nhc2Vkb2MvanVkZ2VtZW50cy9ERUxISS8yMDIxLTA0LTA4LzE2MTgzODgzNjkxNjI3OTgyMzU2MDc2YTU5MTdjNWQ1LnBkZg==
https://greentribunal.gov.in/gen_pdf_test.php?filepath=L25ndF9kb2N1bWVudHMvbmd0L2Nhc2Vkb2MvanVkZ2VtZW50cy9ERUxISS8yMDIxLTA0LTA4LzE2MTgzODgzNjkxNjI3OTgyMzU2MDc2YTU5MTdjNWQ1LnBkZg==
https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/AOD.pdf
https://doi.org/10.1038/s41598-020-62710-8
https://doi.org/10.1038/s41598-020-62710-8
https://www.openstreetmap.org/#map=11/17.4325/78.4293
https://doi.org/10.1038/jes.2013.15
https://doi.org/10.1001/jama.287.9.1132


 ORIGINAL RESEARCH 
Special Issue on Air Pollution and its Impact in South and Southeast Asia (III) https://doi.org/10.4209/aaqr.220110 

Aerosol and Air Quality Research | https://aaqr.org 19 of 20 Volume 22 | Issue 7 | 220110 

in the United States. N. Engl. J. Med. 360, 376–386. https://doi.org/10.1056/NEJMsa0805646 
Prabhakaran, P., Jaganathan, S., Walia, G.K., Wellenius, G.A., Mandal, S., Kumar, K., Kloog, I., 

Lane, K., Nori-Sarma, A., Rosenqvist, M., Dahlquist, M., Reddy, K.S., Schwartz, J., Prabhakaran, 
D., Ljungman, P.L.S. (2020). Building capacity for air pollution epidemiology in India. Environ. 
Epidemiol. 4, e117. https://doi.org/10.1097/EE9.0000000000000117 

QGIS Documentation (2021). A Gentle Introduction to Q GIS. https://docs.qgis.org/3.16/en/
docs/gentle_gis_introduction/index.html 

Randles, C.A., da Silva, A.M., Buchard, V., Colarco, P.R., Darmenov, A., Govindaraju, R., Smirnov, 
A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., Flynn, C.J. (2017). The MERRA-2 aerosol 
reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 
30, 6823–6850. https://doi.org/10.1175/JCLI-D-16-0609.1 

Rani, S.I., T, A., George, J.P., Rajagopal, E.N., Renshaw, R., Maycock, A., Barker, D.M., Rajeevan, 
M. (2021). IMDAA: High resolution satellite-era reanalysis for the indian monsoon region. J. 
Clim. 1–78. https://doi.org/10.1175/JCLI-D-20-0412.1 

Ross, Z., English, P.B., Scalf, R., Gunier, R., Smorodinsky, S., Wall, S., Jerrett, M. (2006). Nitrogen 
dioxide prediction in Southern California using land use regression modeling: Potential for 
environmental health analyses. J. Exposure Sci. Environ. Epidemiol. 16, 106–114. https://doi.org/
10.1038/sj.jea.7500442 

Salam, M.T., Millstein, J., Li, Y.F., Lurmann, F.W., Margolis, H.G., Gilliland, F.D. (2005). Birth 
outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: Results 
from the children’s health study. Environ. Health Perspect. 113, 1638–1644. https://doi.org/
10.1289/ehp.8111 

Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I., Zeger, S.L. (2000). Fine particulate air 
pollution and mortality in 20 U.S. Cities, 1987–1994. N. Engl. J. Med. 343, 1742–1749. 
https://doi.org/10.1056/NEJM200012143432401 

Sanchez, M., Ambros, A., Milà, C., Salmon, M., Balakrishnan, K., Sambandam, S., Sreekanth, V., 
Marshall, J.D., Tonne, C. (2018). Development of land-use regression models for fine particles 
and black carbon in peri-urban South India. Sci. Total Environ. 634, 77–86. https://doi.org/
10.1016/j.scitotenv.2018.03.308 

Sarrat, C., Lemonsu, A., Masson, V., Guedalia, D. (2006). Impact of urban heat island on regional 
atmospheric pollution. Atmos. Environ. 40, 1743–1758. https://doi.org/10.1016/j.atmosenv.
2005.11.037 

Sastry, A.K. (2012). Work on a two-level BDA flyover in Mysore Road crawls. https://www.
thehindu.com/news/cities/bangalore/work-on-twolevel-bda-flyover-on-mysore-road-crawls/
article3295978.ece 

Shy, C.M., Kleinbaum, D.G., Morgenstern, H. (1978). The effects of misclassification of exposure 
status in epidemiological studies of air pollution health effects. Bull. N. Y. Acad. Med. 54, 1155–
1165. 

Singh, V., Singh, S., Biswal, A., Kesarkar, A.P., Mor, S., Ravindra, K. (2020). Diurnal and temporal 
changes in air pollution during COVID-19 strict lockdown over different regions of India. 
Environ Pollut. 266, 115368. https://doi.org/10.1016/j.envpol.2020.115368 

Stafoggia, M., Schwartz, J., Badaloni, C., Bellander, T., Alessandrini, E., Cattani, G., de’ Donato, F., 
Gaeta, A., Leone, G., Lyapustin, A., Sorek-Hamer, M., de Hoogh, K., Di, Q., Forastiere, F., Kloog, 
I. (2017). Estimation of daily PM10 concentrations in Italy (2006–2012) using finely resolved 
satellite data, land use variables and meteorology. Environ. Int. 99, 234–244. https://doi.org/
10.1016/j.envint.2016.11.024 

Stedman, J.R., Vincent, K.J., Campbell, G.W., Goodwin, J.W.L., Downing, C.E.H. (1997). New high 
resolution maps of estimated background ambient NOx and NO2 concentrations in the U.K. 
Atmos. Environ. 31, 3591–3602. https://doi.org/10.1016/S1352-2310(97)00159-3 

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 
B 36, 111–147. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x 

Sun, L., Li, R.B., Tian, X.P., Wei, J. (2017). Analysis of the temporal and spatial variation of aerosols 
in the Beijing-Tianjin-Hebei region with a 1 km AOD product. Aerosol Air Qual. Res. 17, 923–
935. https://doi.org/10.4209/aaqr.2016.05.0185 

The Hindu (2019). Graphite India shuts shop in Bengaluru. https://www.thehindu.com/news/
cities/bangalore/its-official-graphite-india-shuts-shop-in-bengaluru/article26725043.ece 

https://doi.org/10.4209/aaqr.220110
https://aaqr.org/
https://doi.org/10.1056/NEJMsa0805646
https://doi.org/10.1097/EE9.0000000000000117
https://docs.qgis.org/3.16/en/docs/gentle_gis_introduction/index.html
https://docs.qgis.org/3.16/en/docs/gentle_gis_introduction/index.html
https://doi.org/10.1175/JCLI-D-16-0609.1
https://doi.org/10.1175/JCLI-D-20-0412.1
https://doi.org/10.1038/sj.jea.7500442
https://doi.org/10.1038/sj.jea.7500442
https://doi.org/10.1289/ehp.8111
https://doi.org/10.1289/ehp.8111
https://doi.org/10.1056/NEJM200012143432401
https://doi.org/10.1016/j.scitotenv.2018.03.308
https://doi.org/10.1016/j.scitotenv.2018.03.308
https://doi.org/10.1016/j.atmosenv.2005.11.037
https://doi.org/10.1016/j.atmosenv.2005.11.037
https://www.thehindu.com/news/cities/bangalore/work-on-twolevel-bda-flyover-on-mysore-road-crawls/%E2%80%8Barticle3295978.ece
https://www.thehindu.com/news/cities/bangalore/work-on-twolevel-bda-flyover-on-mysore-road-crawls/%E2%80%8Barticle3295978.ece
https://www.thehindu.com/news/cities/bangalore/work-on-twolevel-bda-flyover-on-mysore-road-crawls/%E2%80%8Barticle3295978.ece
https://doi.org/10.1016/j.envpol.2020.115368
https://doi.org/10.1016/j.envint.2016.11.024
https://doi.org/10.1016/j.envint.2016.11.024
https://doi.org/10.1016/S1352-2310(97)00159-3
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.4209/aaqr.2016.05.0185
https://www.thehindu.com/news/cities/bangalore/its-official-graphite-india-shuts-shop-in-bengaluru/article26725043.ece
https://www.thehindu.com/news/cities/bangalore/its-official-graphite-india-shuts-shop-in-bengaluru/article26725043.ece


 ORIGINAL RESEARCH 
Special Issue on Air Pollution and its Impact in South and Southeast Asia (III) https://doi.org/10.4209/aaqr.220110 

Aerosol and Air Quality Research | https://aaqr.org 20 of 20 Volume 22 | Issue 7 | 220110 

The New Indian Express (2017). All of Bangalore Metro Phase-1 will be up and running from 18 
June. https://www.newindianexpress.com/cities/bengaluru/2017/jun/08/all-of-bangalore-
metro-phase-1-will-be-up-and-running-from-june-18-1614155.html 

 
 

https://doi.org/10.4209/aaqr.220110
https://aaqr.org/
https://www.newindianexpress.com/cities/bengaluru/2017/jun/08/all-of-bangalore-metro-phase-1-will-be-up-and-running-from-june-18-1614155.html
https://www.newindianexpress.com/cities/bengaluru/2017/jun/08/all-of-bangalore-metro-phase-1-will-be-up-and-running-from-june-18-1614155.html

	ABSTRACT
	1 INTRODUCTION
	2 METHODS
	2.1 Study Area
	2.2 PM2.5 Data
	2.3 Aerosol Optical Depth
	2.4 Geographical Covariates
	2.4.1 Urban built-up
	2.4.2 Road density

	2.5 Meteorological Covariates
	2.6 Model Development

	3 RESULTS AND DISCUSSION
	3.1 LME Model Results and Discussion

	4 CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

