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Abstract. We present an overview of our studies on some simple mechanical systems including the ‘simple’
nonlinear pendulum and its variants. We show that these systems exhibit numerous types of regular bursting os-
cillations which are seen in biological neurons. In particular, we discuss bow-tie shaped bursts which we found
in a driven pendulum with linear velocity damping, under constant torque and dynamic feedback. Similar bursts
of identical bow-tie shape have been reported by us previously in a system of two resistively coupled Josephson
junctions in a certain parameter regime under certain conditions. We discuss the bifurcation mechanism producing
some of these bursts.
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1. Introduction

Seemingly unrelated phenomena and systems can at
times exhibit nearly identical dynamical behaviour.
While these might normally come as a surprise, often
one finds on further study that the basic governing
equations underlying the dynamics of the two varied
systems are the same. Many other times, however, this
may not be the case and it is not so straightforward to
understand how the differing systems produce the same
behaviour. In all cases, we believe that understanding
the governing mechanism underlying a common
observed dynamical behaviour seen even in an unre-
lated system is useful and can help in providing insights
on a system under study.

Here we discuss examples of some latter situations.
We show that the nonlinear oscillations of certain
simple mechanical systems, in particular bursting os-
cillations, closely resemble those exhibited by certain
biological cells including neurons.

2. The forced pendulum with damping and
dynamic feedback

Consider a damped pendulum with a constant torque
I and forced externally with frequency ω. Further,
consider a dynamic feedback which modulates the

frequency of forcing. The equation of motion describ-
ing the evolution of the angle variable θ in time t is [1]

θ̈ = I − sin(θ) − αθ̇ + sin(ωt − θ), (1)

where α denotes the damping parameter. For forcing
frequencies much smaller than the natural frequency
of the unforced system, the system exhibits bursting
oscillations which have an intriguing bow-tie shape [1]
(shown in figure 1). Bursts such as these are observed
in isolated-CA3 pyramidal neurons [2].

Equation (1) has two fixed points (θ∗, θ̇∗) which exist
only for ω = 0 and I ≤ 2 which are located at P =
(arcsin(I/2), 0) and Q = (π − arcsin(I/2), 0). For I > 2,
the system has no fixed points.

The characteristic equation at P is:

λ(λ2 + αλ + 2h) = 0, (2)

where h =
√

1 − (I/2)2. The eigenvalues are:

0 and λ+,− = (−α ± √α2 − 8h)/2.

The system is critically damped at α= 2
√

2h. For
α < 2

√
2h, the two eigenvalues form complex conju-

gate pairs and P is a stable focus, while for α > 2
√

2h,
it is a stable node.

At Q, the characteristic equation is given by:

λ(λ2 + αλ − 2h) = 0. (3)
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Figure 1. Bow-tie shaped bursting oscillations produced in a
certain parameter regime by the system described by eq. (1).
The bursts appear only for forcing frequencies which are
much smaller than the natural frequency of the unforced sys-
tem. Parameter values: I = 1.2, α = 1.19 and ω = 0.0548.

The eigenvalues are:

0, λ+,− = (−α ± √α2 + 8h)/2.

λ− is always stable while λ+ is not; thus Q is a saddle
point.

The bursts occur for ω � 0 for which the system has
no fixed points. Therefore, to understand the mecha-
nism of the bursting oscillations, the θ − θ̇ phase space
was studied at different instants of time [1]. The vector
field at any time instant is like that of a damped pendu-
lum under constant torque. The flow lines of the vector
field as well as the θ and θ̇ nullclines (in green and red,
respectively) at different instants of time are depicted in
figure 2.

As time progresses, driven by the external force,
points
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(
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2
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+

(
ωt
2

)
, θ̇∗ = 0

)

and

Q =
(
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[ I
2

sec
(
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2
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+

(
ωt
2

)
, θ̇∗ = 0

)
(4)

approach each other, coalesce and disappear and then
reappear after some time in a periodic manner. The
merging of the focus at P and the saddle at Q occurs
at I = 2, when the V-nullcline is tangent to the x-axis
(V = 0). It was shown in [1] that both the vanishing
of the fixed points and their emergence again occur
through a saddle-focus bifurcation.

The resting period between two bursts was estimated
analytically and found to be [1]

Trest =
4
ω

cos−1
( I
2

)
. (5)

Identical bow-tie shaped bursting oscillations were
reported by us in a different study [3] in a very
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Figure 2. Evolution of the vector field with time t of the sys-
tem described in eq. (1) in the θ–θ̇ plane at different times: (a)
t = 13, (b) t = 35, (c) t = 38 and (d) t = 90. The θ-nullcline
is in red while the V-nullcline is in green. The focus and the
saddle at the two fixed points P and Q merge in a saddle–
focus bifurcation at the end of a burst and reappear at the ini-
tiation of the next burst (parameter values: I = 1.25, α = 1.19
and ω = 0.05).

different system – that of two resistive capacitive
shunted junction (RCSJ) models of the Josephson junc-
tion coupled together resistively in a certain parameter
regime, with one junction kept in an oscillatory mode
and the other in an excitable mode. In the latter system,
however, there was no external forcing and the oscilla-
tory junction was the driver for the excitable junction. It
is interesting that the bifurcation mechanisms for burst-
ing in these two systems differ slightly. While in the
damped-forced pendulum with dynamic feedback both
the initiation and termination of a bow-tie burst are via
a saddle–focus bifurcation, in the case of the coupled
Josephson junctions, bursting is initiated by a saddle
node on an invariant circle (SNIC) bifurcation and also
ends via the same mechanism, but the modulation of
amplitudes in the spiking region of the burst occurs via
the saddle-focus bifurcation [3].

3. Other mechanical systems

There is another mechanical system which may be
briefly mentioned – that of a pendulum in which the
length l(t) is varied in time:

d2θ

dt2
+

2
l

dl
dt

dθ
dt
+

g
l

sin θ = 0. (6)

We showed in [4] that under certain conditions, such a
system produces symmetric bursting oscillations. This
is depicted in figure 3.

In a different study [5] we have shown that a slightly
different variant of the mechanical system described in
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Figure 3. An example of symmetric bursting behaviour is
seen in a pendulum with slowly varying lengths under certain
conditions (Ref. [4]). The vertical axis stands for the angle
variable θ and the horizontal axis represents the time t.
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Figure 4. Two different kinds of bursting oscillations (a) and
(b) and mixed mode oscillations (c) are seen in the model
in Ref. [5]. The vertical axis (theta dot) represents the mem-
brane voltage of the model neuron.

eq. (1) exhibits different burst types which are seen in
different kinds of neurons and pancreatic beta cells. A
few examples of the numerous types of bursting and
mixed mode oscillations exhibited by that model are
shown in figure 4. It is interesting that a single model
reproduces a host of different bursts involving different
bifurcations to start and terminate each burst.

Bursts have been studied extensively and classified
by Rinzel [6], Bertram [7], Ermentrout [8], Hoppen-
steadt [9], Izhikevich [10] and several others. Both
spontaneous and evoked bursts have been studied
in vivo as well as in vitro in a variety of cells –
sensory cells, gustatory cells, hair cells of the inner ear,
pancreatic beta cells, neurons in different regions of
the brain, etc. and many models have been constructed
to reproduce their dynamical behaviour. Yet we are far
from getting a reasonably good understanding of their
significance for living systems. Nevertheless, newer
models involving seemingly unrelated systems could

contribute to securing a clearer view of these intriguing
phenomena.

4. Conclusions

Simple nonlinear mechanical systems can exhibit com-
plex bursting oscillatory behaviour akin to those seen
in different biological cells, in particular sensory cells,
neurons and pancreatic beta cells. The focus of this
overview was on the intriguing bow-tie burst produced
by a damped pendulum with external force and a dyna-
mical feedback in a certain parameter regime, though a
few glimpses were provided of other bursts and com-
plex oscillations in some other mechanical systems
studied in Refs [4, 5].

Although the significance of the differing shapes of
bursts in living systems is not known, it is believed that
bursts have some significant roles to play in the normal
functioning of the respective system they are produced
in, for instance in cognitive tasks such as feature
extraction or for associative memory in the nervous
system. Understanding the dynamical mechanism
producing different types of bursts even in unrelated
mechanical systems could help in providing better
insights into the way living systems operate.
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