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The flight of the hornbill: drift 
and diffusion in arboreal avian 
movement
Ankit Vikrant1,3, Janaki Balakrishnan1*, Rohit Naniwadekar2 & Aparajita Datta2

Capturing movement of animals in mathematical models has long been a keenly pursued direction 
of  research1. Any good model of animal movement is built upon information about the animal’s 
environment and the available resources including whether prey is in abundance or scarce, densely 
distributed or  sparse2. Such an approach could enable the identification of certain quantities or 
measures from the model that are species-specific characteristics. We propose here a mechanistic 
model to describe the movement of two species of Asian hornbills in a resource-abundant 
heterogenous landscape which includes degraded forests and human settlements. Hornbill 
telemetry data was used to this end. The birds show a bias both towards features of attraction such 
as nesting and roosting sites as well as possible bias away from points of repulsion such as human 
presence. These biases are accounted for with suitable potentials. The spatial patterns of movement 
are analyzed using the Fokker–Planck equation, which helps explain the variation in movement 
of different individuals. Search times to target locations were calculated using first passage time 
equations dual to the Fokker–Planck equations. We also find that the diffusion coefficients are larger 
for breeding birds than for non-breeding ones—a manifestation of repeated switching of directions 
to move back to the nest from foraging sites. The degree of directedness towards nests and roosts 
is captured by the drift coefficients. Non-breeding hornbills show similar values of the ratio of the 
two coefficients irrespective of the fact that their movement data is available from different seasons. 
Therefore, the ratio of drift to diffusion coefficients is indicative of an individual’s breeding status, as 
seen from available data. It could possibly also characterize different species. For all individuals, first 
passage times increase with proximity to human settlements, in agreement with the premise that 
anthropogenic activities close to nesting/roosting sites are not desirable.

Animal movement is a complex process where complexity of motion increases as the environment around the 
animal becomes more heterogeneous. Most mathematical analyses used to understand animal movement focus 
on either roughly predicting the movement path (Lagrangian Approach) or quantifying how the probability of 
finding an animal at some locations changes over time (Eulerian Approach)3. The Langevin equation is argu-
ably the most basic equation that can be used to describe the movement path of an animal where every step has 
deviations driven by some type of random noise. Most models that employ the Langevin equation to simulate 
animal movement use expressions of polynomial type in the drift  term4,5. Though these seem to be useful in 
many cases, they fail to capture the observed dynamics when the landscape is highly complex and heterogene-
ous. A particular case where these would be insufficient is when there are multiple features in the landscape that 
influence an animal’s movement. A polynomial drift term would mean that as the animal moves away from the 
location of bias, the attraction would also increase since these terms represent forces and are proportional to 
some positive power of distance. For cases of bias towards multiple features, this framework implies that at any 
given time, an animal would be more strongly attracted to locations that are farther from it. Other functions of 
distance have been used more effectively for the drift term, but their use within the animal movement literature 
is currently very  limited6.

Another important aspect about animal movement is search time to any site in an animal’s home range. It is 
hard to disentangle information about this from empirical data, and therefore not many studies have addressed 
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it convincingly. Mathematical models that attempt to do so face computational challenges depending upon the 
complexity of the landscape being studied.

Based on various theoretical considerations and inputs from empirical data for large forest hornbill species 
from North-East India, we propose a robust framework to model movement in heterogeneous landscapes. In 
doing so, we try to address the issues mentioned above and uncover some general features that might be useful 
for various studies elsewhere. Hornbills display a diverse range of movements ranging from a high bias towards 
a single nest site during the breeding season to utilizing multiple roost sites in their non-breeding phase. This 
provides a good study system for our model that captures important aspects of movement without relying on 
fine-scale resource abundance data.

We analysed the telemetry data recorded by two of us (RN and AD) of six tagged hornbills (five Great 
hornbills Buceros bicornis and one Wreathed hornbill Rhyticeros undulatus) in the Pakke Tiger Reserve in the 
northeastern state of Arunachal Pradesh in India. Our telemetry did not encompass the entire breeding cycle 
which for the hornbills lasts till July-August. The length of the nesting cycle is from March to July—around 120 
days for Great Hornbills and 130 days for the Wreathed Hornbill. Details on the nature and collection of the 
data and study area are given in Methods.

Proposed model
A mathematical model to simulate movement. For ‘attracting features’, such as nesting or roosting 
sites, we employ potential terms that are logarithmic in distance. Logarithmic potentials have been employed in 
diffusion  models7 such as those involving long-range  interactions8. The forces due to these are inversely propor-
tional to distance from the features. Given a choice between locations, an animal would invariably drift towards 
ones that are closer. Additionally, they also command some influence for longer distances. We did consider 
alternatives such as a potential that corresponds to an inverse squared force but it diminishes much faster as the 
distance to the source increases. The ‘repulsive features’ such as human dominated areas are incorporated using 
Gaussian type potentials that would have an influence only when the animal is close to them. Such forces fall off 
exponentially fast as one goes away from the source location.

The corresponding Langevin equations can be written as:

where x and y denote the coordinates of an animal’s location. ( xi , yi ) and ( xj , yj ) denote locations of i attracting 
and j repelling features respectively. We only choose nests as points of attraction for breeding hornbills since 
their diurnal movements are strongly centred around the nests. The white noise terms ξx and ξy are Gaussian 
in nature and delta correlated—which means that no correlations exist between the noise values at different 
instances of time. γ and D denote the drift and diffusion coefficients respectively. The drift coefficient γ represents 
the directedness of motion, which could be interpreted as strength of bias towards/against certain features in the 
landscape. In contrast, D quantifies the strength of random undirected motion. The force term with coefficient 
−γ results from negative gradient of the logarithmic potential, whose choice we explained earlier:

The value of α is determined from calculation of first passage times of the birds (discussed in the following sec-
tion) and comparison of the values so obtained with observational (telemetry) data. We find that α = 8 gives 
biologically sensible first passage times for hornbills (see “Calculating First Passage Times” in Methods section, 
Table 3 and Supplementary Tables 1, 2). If one observes an animal’s movement for a very long time, the prob-
ability of finding the animal would decrease more drastically away from a central feature for lower values of α . 
Such variations are captured by the steady-state probability distributions of space-use that we describe in the 
following section.

Fokker–Planck methods. Although the Langevin equations can generate trajectories of movement, the 
corresponding simulations need to be run for very long times to infer reliable information about spatial use. 
The time steps are further much smaller than the frequency of data recorded by the GPS. The step-lengths thus 
generated from simulated trajectories do not lend themselves to comparison against those from the recorded 
data. A convenient alternative is to solve a Fokker–Planck equation which has a direct correspondence with the 
Langevin equations. For our model, this takes the form:
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where

The Fokker–Planck equation describes the evolution of the probabilities of occurrence over a given region. The 
probability distribution eventually reaches a ‘steady state’ which captures the long-term occurrence probabilities 
for a given bird, and it does not change beyond this point in time. This steady-state probability distribution can 
be computed by setting the time derivative term to zero in Eq. (4). The numerical solution of the Fokker–Planck 
equation involves discretizing the spatial derivatives involved. The steady state probability distribution is con-
sequently obtained on a spatial domain of discretized grids.

Interestingly, Giuggioli et al.9 considered logarithmic potentials in their work on home range estimation, 
where an exponent of 8 was found to have a very similar steady state distribution to that from a harmonic poten-
tial. Harmonic potential has been utilized in analyzing home ranges of Peromyscus maniculatus10.

Using the steady-state solution of the Fokker–Planck equation, we compute the mean square displacement 
averaged over different possible starting locations using the steady state distribution. A discrete version of the 
mean-square displacement (MSD) can be defined as:

where P0(xi , yi) is the distribution of starting locations xi and yi from where displacements are calculated. The 
inner angular brackets represent a similar weighted average of the mid-points of all grids over the steady-state 
probability distribution Pst(x, y) . Many of the grids that we define to perform simulations lie outside the known 
home range of the birds. The probability of choosing a starting location is defined using a Gaussian distribution 
centred around the nest or the most visited roost site.

The square root of the MSD defines a characteristic length scale. This could be interpreted as home range 
length when the steady state distribution is computed over an infinite  extent9. A logarithmic potential does not 
lend itself to such computations since it decays much more slowly such that the characteristic length continues 
to grow with the size of the area considered. We evaluate the characteristic length scale (L) on a domain that is 
not much larger in size compared to the observed home range.

We also calculate L from empirical data by using the probability of occurrence over space inferred from 
two-dimensional histograms of location data. The MSD in this case is evaluated in the same vein as above but 
now the displacements from initial locations are weighted over the probabilities of occurrence derived from the 
histograms. Since these probabilities are only available for each grid, we choose only the mid-points of grids as 
possible locations to find the result. The starting locations are chosen from a uniform distribution over the mid-
points of the grids. This is definitely a crude way of evaluating L but it does give us some way of comparing our 
numerical solutions against data. Finding a joint-probability distribution over the two dimensions would have 
been ideal but it is complicated by the fact that the distribution over space is multi-modal owing to multiple roosts 
for some hornbills. When inferring MSD from the location coordinates directly, it increases before saturating 
as the sampling frequency is decreased. For very high sampling frequency (or very small time intervals), diffu-
sion effects dominate which leads to an almost linear increase in MSD. The effects of drift are more prominent 
compared to diffusion for lower sampling frequencies which marks the saturation of the MSD  values10.

A first-passage time model for heterogeneous environments. The temporal information about an 
animal’s whereabouts is highly scrambled in the data. An important quantity of interest that could be extracted 
from movement data is the search time to reach a given target. A very useful measure of search times is the ‘first 
passage time’. Very generally, first passage time is the time taken for a given state variable to reach a particular 
value. In the case of animal movement, it can be interpreted as the time taken to reach a particular target loca-
tion. McKenzie et al.11 derived an interesting first passage time model which had a direct correspondence with 
a Fokker–Planck equation. We use the prescription of Moorcroft et al.12,13 to estimate the drift and diffusion 
coefficients. This assumes a movement kernel that is a product of exponential distribution of step lengths and 
von Mises distribution for the turning angles. (This may be seen in the “goodness of fit tests” section in Methods 
where we assess fit of our data to claimed distributions.) It can be expressed as:

(4)

∂P(x, y, t)

∂t
=

∂

∂x

{

Fx + D
∂

∂x

}

P(x, y, t)

+
∂

∂y

{

Fy + D
∂

∂y
.

}

P(x, y, t)

(5)

Fx = −γ
∑

i

2α × (x − xi)

(x − xi)2 + (y − yi)2

+ γ
∑

j

(x − xj) × e−((x−xj)
2
+(y−yj)

2)

Fy = −γ
∑

i

2α × (y − yi)

(x − xi)2 + (y − yi)2

+ γ
∑

j

(y − yj) × e−((x−xj)
2
+(y−yj)

2)

(6)MSD =

N∑

i

�(x − xi)
2 + (y − yi)

2�P0(xi , yi)



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5591  | https://doi.org/10.1038/s41598-021-84074-3

www.nature.com/scientificreports/

Here, X , X′ denote the current and previous locations respectively, f is the exponential distribution of step lengths 
ρ with rate parameter � and mean ρ̄τ = 1/� , and kτ is the von Mises distribution of turning angles φ . τ refers to 
the time taken to complete a given step. The turning angles are computed with respect to the nest/roost sites. 
κτ is the concentration parameter of the von Mises distribution which signifies the departure from a uniform 
distribution of movement directions. The normalizing factor I0(κτ ) is a modified Bessel function of the first kind 
and of zeroth order. The drift and diffusion coefficients can be reliably estimated as:

Employing the formalism in  McKenzie11 to derive the equation for the first passage time T, we obtain the fol-
lowing equation:

The terms in dot product with ∇T are simply the drift coefficients with spatial dependence.
McKenzie et al.11 had a simpler version of the first passage time equation that only accounted for bias towards 

the home range centre. The authors mention that the task of solving the first passage time equation is compu-
tationally harder with terms that account for more complex types of heterogeneities. We transform the partial 
differential equation in (12) into polar coordinates which simplifies the process of solving it (see First Passage 
Time calculation in Methods). The first passage times obtained from this solution also help us fix the value of α 
in the equation above and subsequently in the logarithmic potential in (3), and in Eqs. (1) and (2). On perform-
ing this analysis for different hornbills, we see that α = 8 works very well for them irrespective of the species and 
distribution of heterogeneities around them (see First Passage Time calculation in Methods). First passage times 
are calculated from the roosting/nesting site that lies closest to the home range centre. In case of GHNBr2, we 
calculate the first passage times from the approximate home range centre where no roosts exist. This ensures 
that most points considered for computations lie within the actual extent of the bird’s recorded locations. We 
used the Minimum Convex Polygon method to estimate the approximate home range  centre14. This helped 
in identifying a location for each bird—which was a roost/nest in most cases—from where first passage times 
were subsequently computed. The method used for home range estimation is not relevant in the context of our 
proposed model and results presented, and therefore we do not consider other alternatives.

Results
Movement data was gathered using e-obs tags from 20 to 81 days of six hornbill individuals named GH1Br, 
GH3Br, GH4Br, GH2NBr, GH5NBr and WH1Br by the observers. This is represented in Fig. 1 and in Table 1. 
Figure 2a shows movement simulation for the Great hornbill GH1Br using the Langevin equation and its corre-
sponding probability map (Fig. 2b) of spatial use from the Fokker–Planck equation. Results for the other hornbills 
are presented in the Section “Probability distribution of space use of territories of other hornbills’’ in Methods. 
In Table 2, we compare the characteristic length L calculated from data and the Fokker–Planck equation.

The steady-state probability distributions in Figs. 2 and 3, and Fig. 11 in the Methods section were gener-
ated numerically using the package ‘fplanck’ in python. The repulsive terms have a very weak influence on the 
probability distribution of space use. These distributions could very well be approximated through analytical 
calculations for breeding hornbills, whose activity is strongly centred around a single nest (Fig. 4). The influence 
of the repulsive terms affects the steady-state probability distributions only at fine spatial scales since the space 
use is much more strongly influenced by nests over longer times. However, search times are significantly affected 
by these repulsive features (See Results Section “Temporal patterns in hornbill movement”).

The steady-state probabilities fell off very slowly away from the points of attraction. This feature is ensured 
by the logarithmic potential that we choose. This is especially helpful to study movement patterns of birds such 
as WH1Br, which makes some rare trips to regions far away from its nest. The probability of occupying these 
far off areas is extremely low as the empirical data shows (Fig. 11e). The results from Fokker–Planck equation 
also yield very small but non-zero probabilities at such distances (Fig. 11f). Other potentials like the harmonic 
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Figure 1.  Data points and corresponding 100% Minimum Convex Polygons for different hornbills with respect 
to the landscape.

Table 1.  Estimated drift ( γ ) and diffusion (D) coefficients for hornbills. B denotes breeding, NB denotes non-
breeding, GH stands for Great hornbill, WH for Wreathed hornbill. GH2NBr (an adult non-breeding male) 
was tagged in the non-breeding season, the younger non-breeding male GH5NBr was tagged in the breeding 
season.

Hornbill 
code Species Tagging Period Season Status γ D γ/D

GH1Br GH 2 Mar–19 May, 2015 (79 days) B B male 0.455 0.060 7.58

GH3Br GH 17 Feb–08 Apr, 2016 (52 days) B B male 0.289 0.042 6.88

GH4Br GH 25 Feb-15 Mar, 2016 (20 days) B B male 0.348 0.085 4.09

GH2NBr GH 23 Nov’15 -15 Jan’16 (54 days) NB NB male 0.376 0.041 9.17

GH5NBr GH 5 Mar–10 May, 2016 (67 days) B NB male 0.317 0.034 9.32

WH1Br WH 29 Mar–17 Jun, 2015 (81 days) B B male 1.865 0.575 3.24

Table 2.  An approximation of characteristic length scales from data and numerical solutions. The calculations 
from empirical data were executed over larger grid sizes that were obtained from the two-dimensional 
histograms of location data.

Hornbill L from data (m) L from steady-state distribution (m) Percent error

GH1Br 1386.68 1630.43 17.56

GH3Br 720.36 755.72 4.91

GH4Br 771.11 970.60 25.87

GH2NBr 9477.95 9730.95 2.67

GH5NBr 6029.41 5580.81 7.44

WH1Br 6424.16 6851.59 6.65
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potential are useful to capture movements that can be represented by simple random  walks10, but they are sub-
optimal when the probability distributions of space use have long tails.

As we previously posited, logarithmic potentials can also explain movement around multiple roosts, which 
is the case for GH2NBr and GH5NBr. Our solutions show that the steady-state probabilities are appropriately 
distributed around the roosts (Figs. 3f and 11d). Potentials that scale with some positive power of distance would 
fail here. The spatial probability would peak around the centroid of roosts rather than at the roosts themselves 
(Fig. 5) which does not match with empirical evidence.

The movement model we described was supplemented by knowledge of drift and diffusion coefficients. These 
coefficients were estimated from the empirical data and their values also unveil some interesting patterns. Table 1 
suggests differences in the values of both coefficients between breeding and non-breeding hornbills.

Breeding status and classification of movement patterns. The breeding birds had higher values of 
D, that quantifies the strength of random undirected motion. We note that the Wreathed hornbill WH1Br which 
also ranges over a larger area had much higher values of both γ and D than the other Great hornbills.

The two non-breeding hornbills had very similar values of the ratio of the coefficients R ≡ γ /D in spite of 
the data being from different seasons. The values of R were 9.17 and 9.32 for GH2NBr and GH5NBr respectively. 
Interestingly, we find that while the ratio R for the breeding Great hornbills ranged from 4.09 to 7.58, it was 
about 9.17–9.32 for non-breeding Great hornbills, and was around 3.24 for the breeding Wreathed hornbill. If 
R = 0 , then the motion is entirely random and there is no bias towards or against any feature. Higher values of R 
indicate that the movement of any individual is more directed than random. Given a certain species, anchoring 
of the birds to their nests is what makes the ratios different.

Temporal patterns in hornbill movement. Some general features were also evident from the first pas-
sage time analysis (Figs. 6, 7). α = 8 gave a good sense of search times compared to other alternatives for all 
hornbills irrespective of their breeding status and time of the year (see the Section “Calculating first passage 
times” and Table 3 in Methods). The angles shown in Fig. 7 increase anti-clockwise from 0 degrees which cor-
responds to the east direction.

For a given bird, first passage times were mostly identical in different directions at short distances from the 
roosting/nesting sites. Search times were consistently higher in directions where human modified landscapes 
existed, more so if these were located at short distances from the bird’s roost/nest. This is especially evident for 
GH1Br and GH5NBr since their home range boundaries lie close to human settlements. Wreathed hornbills 
are known to move over large distances to track fruit resources at large  scales15. WH1Br exhibited much more 
varied movement patterns, as is expected of a Wreathed hornbill. It also ventured into the forested areas beyond 
the human settlements. The first passage times for WH1Br increase more in directions of settlements initially. 
WH1Br reached areas beyond the human settlements after some distance, and this was reflected in the standard 
deviation of first passage times. The standard deviation in first passage times increased with distance up to a 
point beyond which it saturated (Fig. 8). This is evident in Fig. 8 and the movie file SI Fig 4 linked to the figure in 
Supplementary Information. In contrast, if human-modified landscapes were sufficiently far from a given bird, 
their search times increased almost isotropically from the starting location, which is the case for GH3Br. Overall, 
an anisotropic rise in first passage times was only noticed near forest edges that lie closer to human settlements.

Figure 2.  (a) Simulated movement points for breeding Great hornbill GH1Br generated with 7500 time steps 
from the Langevin equation. (b) Corresponding probability map of spatial use from Fokker–Planck equation. 
Also see Supplementary video SI Fig 1.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5591  | https://doi.org/10.1038/s41598-021-84074-3

www.nature.com/scientificreports/

Discussion and conclusions
Our framework is very general and would also hold for other animals that live in fairly resource rich environ-
ments. Modelling movement in landscapes with sparse resources is also possible given a fair knowledge of 
resource distribution. Here, we model the probability distribution of space use for hornbills and drift and diffu-
sion coefficients were calculated from recorded data.

Figure 3.  The probability of space use over the territories from empirical data against the steady-state 
probability distributions from Fokker–Planck equation. The details are as in Fig. 11 for (a, b) GH3Br, (c, d) 
GH4Br, (e, f) GH5NBr.
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The breeding hornbills are bound to access a much smaller area around their nesting sites, and thus make 
numerous trips between their nests and fruiting trees. A higher value of D is a reflection of the repeated move-
ment of these birds over recently traversed paths by random switches in the  direction11.

For a given species, the ratio of coefficients (R) has a particular range that further shows a clear partition 
between breeding and non-breeding birds. We suggest that in the absence of visual observations, the ratio R 
obtained from telemetric data, may be used as an additional quantifier for the breeding status of individuals in 
a given species.

The analysis suggests that seasonal variability in foraging resources/fruit availability has a low influence on 
movement patterns of non-breeding hornbills. The ratios for the 2 non-breeding birds were very similar even 
though their data pertains to different times of the year. It must be noted that non-breeding hornbills are not 

Figure 4.  The steady-state probability distribution from the Fokker–Planck equation for GH1Br without using 
the repulsive terms. The probabilities are very similar when compared to Fig. 11b that includes data for repulsive 
locations.

Figure 5.  Steady-state probability distribution computed for GH1Br using harmonic potential that scales as 
x
2 . For this case, we placed an additional hypothetical roost site at ( X = 1 km, Y = 2 km) apart from the nest 

at the origin. The probability distribution is centred around the centroid of the two roosts. Also, note that the 
probability is more evenly spread in the region where it is not close to 0 (represented by the yellow region).
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constrained in terms of just staying around one nest, and can therefore access multiple resource-rich areas. In 
fact, we could identify at least three locations for both non-breeding hornbills from data where they stayed for 
two consecutive nights or more. So, once they reach these locations, they can obtain optimal nutrition by moving 
minimally. Although they range farther than breeding birds, the distances covered by them per day are relatively 
 smaller14. Also, since non-breeding individuals do not need to return to a nest site frequently, they can search 
for resources spread over larger areas. We do not disregard the possible influence of resource availability on the 
choice of roosts around which these birds forage. However, once this choice is made, the directedness of motion 
or random switching of directions has a weak dependence on the fruit availability around the roosts.

Figure 6.  First Passage Times (in hours) for individual hornbills closer to the edge of their home ranges, for 
different angles. (Vertical) Black lines indicate repulsive directions. Distances r from the home range centre are 
respectively: (a) GH1Br, r = 1.8 (b) GH3Br, r = 0.74 (c) GH4Br, r = 3.16 (d) GH2NBr, r = 9.28 (e) GH5NBr,  r = 
5.11 (f) WH1Br, r = 7.00 km. Also see Supplementary video SI Fig. 4.
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The recorded data for GH4Br spans only 20 days, in contrast to other individuals that were tracked for more 
than 50 days. The estimated values of its coefficients are less reliable since they reflect only a small part of the 
breeding season. This could explain the slight departure of its ratio R from that for GH1Br and GH3Br.

GH1Br is the only individual among the Great hornbills that crossed the Pakke river and accessed some parts 
of the human modified landscape (Fig. 2). This could be the case because its nest is very close to the river and 
Great hornbills may be facultatively territorial during the breeding season, or at least defend the nest area and 
its immediate vicinity. It is possible that this bird avoided certain patches within the forested side because of 
the nests of other Great hornbills there. More information about resource distribution at finer scales could help 
account for this observation. On the other hand Wreathed hornbills have different dietary needs and foraging 
strategies and are non-territorial15,16. Moreover, even though it is a smaller body-sized species than the Great 
hornbill, it ranges over larger areas. WH1Br shows much less constrained movement patterns for a breeding 
hornbill. It is known to have multiple roosting sites, and accessed forested areas lying to the east of Pakke river 
and the adjoining human settlements outside the Tiger Reserve.

Figure 7.  Polar plots depicting the locations considered for calculation of the first passage times. There is a 
one to one correspondence between the placement of the dots along respective directions in the plots in this 
figure and the corresponding plots in Fig. 6. The colour palette depicts first passage times in hours. The 0 degree 
direction represents east with respect to the actual landscape. Blue crosses show the location of repulsive features 
that are considered in computation of first-passage times. (a) GH1Br, (b) GH3Br, (c) GH4Br, (d) GH2NBr, (e) 
GH5NBr, (f) WH1Br.
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Our model captures the probability distribution of spatial use by the hornbills over long times. In doing so, 
it uses minimal information such as the locations of roosts/nests.The steady state probability distributions give 
information about space use that is sub-optimally captured by analysis of movement trajectories and home range 
boundaries. In our work, we only use information about nests/roosts to find these probability distributions of long 
term space use. In case of just a single nest, this yields homogeneous probabilities of finding a bird at fixed radius 
from the nest. The predicted distributions are more heterogeneous for the non-breeding birds as a consequence 
of multiple roost sites that we used in the analysis. The heterogeneities in space use at finer scales –irrespective 
of the breeding status—could be identified using other kinds of information such as distribution of fruiting trees. 
This would be ensured by the fact that our model predicts multi-modal distributions in case there are multiple 
centres of attraction in a landscape. We leave the inclusion of resource distribution for future work.

Our study shows that first passage times increase with proximity to human settlements, especially if these are 
located at short distances from a bird’s nest/roost. This is expected since an individual cannot search optimally 
in these areas, more so when it comes closer to them. Human-modified landscapes may constrain the great 
hornbills in foraging efficiently within their small home range when they breed, and they would potentially have 
to spend more time in searching for food. Hornbills have a preference for specific nest tree species with certain 
characteristics and such trees are  limiting17, however they do use nest trees and breed successfully outside pro-
tected areas. However, the extent and degree of human modification around these sites determine whether such 
nest trees are occupied and  successful18. While nesting may happen even at degraded sites, foraging movements 
may be lengthened or constrained due to poor resource availability and human disturbance in the modified 
landscapes  outside19. A detailed knowledge of their nesting sites would therefore be very useful in informing 
land development decisions, especially outside protected areas.

Methods

Information on hornbill data. Study area. The study was carried out in Pakke Tiger Reserve (PTR; 
area: 861.9 km2 ; elevation: 150–1800 m ASL; range: 92◦

36
′ – 93◦

09
′
E and 26◦

54
′–27◦

16
′
N ), a protected area, in 

Arunachal Pradesh state which is part of the Eastern Himalaya Biodiversity Hotspot. The intensive study site was 
in the south-eastern corner of the reserve. The vegetation is classified as Assam Valley tropical semi-evergreen 
 forest20. More than 78% of trees are biotically-dispersed21. Human settlements lie distributed along the Pakke 
river which flows along the south-eastern boundary of the reserve.

Hornbill species. The body size of the Great Hornbill is 2.2–4 kg, while that of the Wreathed hornbill is 1.4–3.7 
 kg22. The hornbill breeding season in this area is from March to mid-August. IUCN has classified the Great and 
Wreathed Hornbills as ‘Vulnerable’ (IUCN 2018)23.

Field methods. Hornbill movement. We (RN and AD) tagged five adult, male Great Hornbills and one 
adult, male Wreathed Hornbill between October 2014 and May 2016. We trapped the hornbills using canopy-
mounted mist nets at fruiting fig trees. The captured birds were measured, weighed and tagged. Only adult 
male birds were fitted with battery-operated e-obs GPS loggers (Model ‘Bird 1A’). Tags were produced by e-obs 
GmbH (https ://www.e-obs.de, Germany). The weight of the tag was 55 gm which is less than 2% of the weight of 

Figure 8.  Standard deviation of first passage times for WH1Br at different distances from its nest. At a given 
distance, the standard deviation is obtained over all the movement directions. The region of steepest increase 
represents areas around human settlements. The standard deviation saturates after a certain distance since the 
bird has crossed the human settlements along the directions where they exist.

https://www.e-obs.de
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Wreathed and Great Hornbills. The tag was fitted like a backpack using Teflon strings (0.55” wide). We did not 
tag female and juvenile birds as they could affect female entry/exit at nests or the growth of juvenile birds. The 
data loggers took GPS fixes at 15-minute intervals between 3 am and 7 pm (one hour before and after sunset in 
this area). The stored data was remotely downloaded using a base station.

Ethics statement. We (RN and AD) obtained research and animal capture permits from the Arunachal 
Pradesh Forest Department, National Tiger Conservation Authority and the Ministry of Environment and For-
ests, New Delhi and conducted the research under the supervision of Pakke Tiger Reserve management. Ethics 
clearance was obtained from the Ethics Committee of the Nature Conservation Foundation. We followed estab-
lished methods of capture/tagging of hornbills and were advised by senior wildlife veterinarian Dr.Parag Deka, 
Aaranyak to minimize risk to individual birds.

Fitting step-lengths and angles to distributions. We chose a heuristic to filter the recorded data avail-
able. We computed step-lengths corresponding to every two consecutive coordinates. If the sum of tag GPS-
errors for a pair of consecutive coordinates was greater than the corresponding step-length, we did not use them 
in our analysis. An alternative was to exclude all step lengths that lie below the average GPS-error of the tag. 
However, this is excessive since many of these small step lengths correspond to locations with lower GPS-errors 
than average and therefore should not be excluded.

We checked the step-length distributions for all hornbills against exponential distributions first. We used 
the Kolmogorov-Smirnov24,25 (KS from here onwards) test statistic to assess the goodness of fit. A high p-value 

Figure 9.  Best fit lines corresponding to exponential distribution of step lengths for different hornbills. 
(p-values from KS test for (a) GH1Br ( p = 0.0010 ), (b) GH3Br ( p = 0.0005 ), (c) GH4Br ( p = 0.0755 ), (d) 
GH2NBr ( p = 0.0028 ), (e) GH5NBr ( p ≤= 10

−10 ) and (f) WH1Br ( p ≤ 10
−10).
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indicated that the null hypothesis—the two distributions being compared are identical—cannot be rejected. The 
test displayed in Fig. 9 did not show a good fit for GH5NBr and WH1Br. We tried other distributions such as 
Weibull and Beta distribution as well but we got poorer or similar fits in most cases.

We computed the angle corresponding to every step with reference to a point of attraction, which was the 
nest for breeding birds or the most frequented roost otherwise. We expected the distribution of such angles to 
follow a von Mises distribution, which is also alluded to in the  literature12. The von Mises distribution is a circular 
distribution which is similar to the normal distribution in linear  statistics26. This is useful for angles which could 
be used in periodic functions to yield the same values over different domains. We tested the fit to this distribution 
using KS test again (Fig. 10). The κ parameter in this distribution quantifies the concentration of the distribution 
around some mean direction. This is particularly useful for situations where one is interested in bias towards a 
particular feature. We computed κ with reference to two most frequented roosts for each of the non-breeding 
hornbills. The roosts used by GH2NBr were at least 15 kilometres apart but yielded very similar values of the 
parameter—1.31 and 1.38. This parameter encodes the general non-uniformity of movement directions, which 
does not vary much across preferred sources of attraction.

The process of filtering the data improved the fit to claimed distributions for some of the birds. Our heuristic 
did not rely on placing a cut-off in terms of removing step-lengths below a certain number (Eg: Average GPS-
error), so a good number of small step-lengths were also retained. The two-dimensional probability distributions 
that we generated from data had large grids (two-dimensional bins) which means that the filtering process had 
a very small effect on the mean-squared displacement.

Figure 10.  Best fit lines from von Mises distribution against histograms of angles for different hornbills. 
(p-values from KS test for (a) GH1Br ( p = 1.20 × 10

−7 ), (b) GH3Br ( p = 0.0035 ), (c) GH4Br ( p = 0.002 ), (d) 
GH2NBr ( p = 0.016 ), (e) GH5NBr ( p = 6.07 × 10

−5 ), (f) WH1Br p ≤ 10
−10).
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Probability distribution of space use of territories of other hornbills. We calculated the probabil-
ity distributions of space use for the hornbills from observed data and compared these against the steady state 
distributions obtained from the Fokker–Planck equation, in Fig. 11.

Calculating first passage times. We converted our First Passage Time equations into polar form since 
boundary conditions were easier to define in this coordinate system. We used the forward difference formula for 
spatial derivatives in the discretized version of Eq. (12). These discrete forms could be read off from the terms 
involving �r , �r

2 and �θ
2 in Eq. (13). Another option that we tried was using a forward difference formula for 

Figure 11.  Visualization of the probability of space use over the territories from empirical data (plots on the 
left) against the steady-state probability distributions from Fokker–Planck equation (plots on the right). X and 
Y distances along the respective axes are in kilometres. The empirical plots were generated from 2-d histograms 
of location data. The location data was first projected to UTM coordinates. The origin was fixed at the nest for 
breeding birds and at one of the roosting sites for non-breeding hornbills. The smaller grid size is necessary 
to get greater accuracy in the numerically generated solutions. The numerical solutions also demand axes that 
are symmetric around the origin. Therefore, the histogram based probability distributions from data have very 
different grid sizes for their visualizations. The plots based on numerical solutions have been cropped to match 
the extent of axes of those from empirical data. (a, b) GH1Br, (c, d) GH2NBr, (e, f) WH1Br.
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first order spatial derivatives but a central difference formula for derivatives of second order. We checked the 
efficiency of both choices by comparing values of first passage times at 0 and 360 degrees at the same radius. We 
noticed that they were almost the same when using just the forward difference formulae. The other possibility 
showed a larger deviation and was thus ruled out.

The first passage time equation in (12) was converted into polar form and discretized to give:

where summation label j runs over all the repelling features. We only considered attraction to a single location 
here which was set as the origin, since other roosting sites would not play a role in influencing the hornbills when 
they search for a target within a day. The indices p and q correspond to the pth radius and qth angle respectively 
at any particular point (r, θ) of the grid where points are represented in polar coordinates. Our equation can be 
put in a matrix form as:

A and B are N × N square matrices where N is the number of angles and radii that we want to create grids. Tp 
is a vector of size N.

Matrix A has the same value across all diagonal elements. Off diagonal entries are 0. Also, 
a11 = r2r − r6r

3
∑

j exp(−(r2 + r2j − 2r × rj × cos(θ − θj)) + r3r
2
+ r4r.

(13)
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q
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p
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)
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a11 0 ... ... 0

0 ... ... ... ...

... ... ... ... ...

... ... ... ... ...

0 ... ... 0 a11
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

Table 3.  Hornbill first passage times at fringes of home range for α = 8.

Angles (degrees)

First passage times (in hours)

GH1Br GH4Br WH1Br GH3Br GH2NBr GH5NBr

0 0.257 1.042 0.897 0.065 7.614 3.900

25.714 0.207 0.944 0.867 0.064 7.614 3.816

51.429 0.204 0.935 0.736 0.064 7.614 3.816

77.143 0.203 0.935 0.734 0.064 7.614 3.816

102.857 0.203 0.935 0.734 0.064 7.614 3.816

128.571 0.203 0.935 0.734 0.064 7.614 3.816

154.286 0.203 0.935 0.734 0.064 7.614 3.816

180 0.203 0.935 0.734 0.064 7.614 3.816

205.714 0.203 0.935 0.735 0.064 7.614 3.816

231.429 0.203 0.935 0.738 0.064 7.614 3.811

257.143 0.208 0.938 0.747 0.064 7.614 4.910

282.857 0.229 1.091 0.774 0.064 7.588 5.702

308.571 0.289 1.715 0.813 0.064 17.106 4.388

334.286 0.307 0.998 0.780 0.064 7.817 3.833

360 0.257 1.042 0.901 0.065 7.614 3.900
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M a t r i x  B  a l s o  h a s  t h e  s a m e  e n t r y  f o r  a l l  d i a g o n a l  e l e m e n t s ,  i . e . , 
b11 = r2r − r6r

3
∑

j exp(−(r2 + r2j − 2r × rj × cos(θ − θj)) + 2r3r
2
+ r4r + 2k1 . All rows except the first and 

last have −k1 as an entry just before and after the diagonal element.

H e r e ,  k1 = D(�r)2 ;k2 = 2α × γ (�r)(�θ)2  ;  k3 = D(�θ)2  k4 = D(�r)(�θ)2  ;  k5 = (�r)2(�θ)2  ; 
k6 = γ (�r)(�θ)2.

�r and �θ are radial and angular grid spacings which depend on the number of grid points.
First passage times calculated with α = 8 are shown in Table 3 for hornbills. These may be compared with 

those obtained for α = 4 and 2 displayed in Supplementary Tables 1, 2. We find that the calculated values are 
closest to recorded data for α = 8 . These first passage times were computed at the farthest extent of each hornbill’s 
home range in different directions. GH3Br had a very small home range of 1–2 sq.km. The frequency of our 
data is 15 minutes but it is evident from the data that GH3Br took less than that duration to reach the fringes of 
its home range. α = 8 has times that are sufficiently below that value whereas α = 4 and α = 2 predict higher 
times (see Supplementary Tables 1, 2). The first passage times become highly unrealistic for lower values of α 
which is evident from the α = 2 case. In general, predicted values for α < 8 are higher than what is roughly 
expected. Similarly, α > 8 yields lower first passage times which are not consistent with the patterns observed 
for all hornbills.

Data availability
The hornbill data that support the findings of this study are available  at14,27.

Code availability
Requests related to the numerical modelling code associated with this paper should be sent to the authors.
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Details of numerical computations of first passage times

In eqns.(7,8), κτ is determined using the ‘est.kappa’ function from ‘CircStats’ library in R. It simply finds maximum
likelihood estimate of kappa from turning angle data. ρτ was similarly evaluated by taking inverse of the rate parameter
of exponentially distributed step length data. ‘eexp’ function from the package ‘EnvStats’ was used for maximum
likelihood estimation of the rate parameter.
Equation (11) is a linear system of equations that we solve at each radius step using linalg package in numpy.

All first passage times are set to 0 at r = 0. It must be noted that the solutions are sensitive to the grid spacings
∆r and ∆θ. The values of ∆r and ∆θ should not be too small else the solutions misbehave. This is because at the
solution at every radial step are approximations. These errors accumulate as we progress with more number of steps.
The algorithm used performs well even for upto 30 angular and radial points in many cases. To keep errors to a
minimum, it is recommended that the grid should not have more than 15 angles and 15 radii. A good way to check
the validity of solutions is to compare the first passage time values obtained at 0 and 360 degrees. Our solutions do
well if the values at 0 and 360 degrees are roughly the same. Calculation of the first passage time T (from equation
(9)) requires knowledge of the value of α in the expression for the potential (eqn.(3)). This is determined in the
following manner. Equation (9) is first solved for T using some arbitrary α value at the farthest home range extent
for each bird in different directions. The value so obtained is compared with actual recorded telemetry data. If the
calculated values differ significantly from or are larger than the recorded values, then we consider the corresponding
α value as inappropriate.

Supplementary Tables:

Angles
First Passage Times(in hours)

(degrees) GH1Br GH4Br WH1Br GH3Br GH2NBr GH5NBr

0 0.749 2.323 3.369 0.131 15.026 7.862

25.714 0.471 1.846 2.813 0.126 15.026 7.528

51.429 0.413 1.817 1.272 0.126 15.026 7.533

77.143 0.402 1.817 1.420 0.126 15.026 7.533

102.857 0.401 1.817 1.416 0.126 15.026 7.533

128.571 0.400 1.817 1.416 0.126 15.026 7.533

154.286 0.400 1.817 1.416 0.126 15.026 7.533

180 0.400 1.817 1.417 0.126 15.026 7.533

205.714 0.401 1.817 1.419 0.126 15.026 7.533

231.429 0.403 1.817 1.431 0.126 15.026 7.484

257.143 0.418 1.826 1.458 0.126 15.026 6.853

282.857 0.517 2.683 1.581 0.126 15.049 525.296

308.571 1.864 1.226 2.227 0.126 8.064 4.746

334.286 -198.097 2.058 1.420 0.126 16.045 7.751

360 0.734 2.320 3.50 0.131 15.025 7.862

SUPPLEMENTARY TABLE - 1: Hornbill first passage times at fringes of home range for α = 4.

∗Corresponding author email: janaki05@gmail.com
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Angles
First Passage Times(in hours)

(degrees) GH1Br GH4Br WH1Br GH3Br GH2NBr GH5NBr

0 -9.605 6.798 -105.682 0.263 29.274 15.966

25.714 1.001 3.527 37.662 0.242 29.274 14.64

51.429 0.821 3.435 -0.689 0.243 29.274 14.685

77.143 0.782 3.437 2.760 0.243 29.274 14.683

102.857 0.777 3.437 2.642 0.243 29.274 14.683

128.571 0.777 3.437 2.643 0.243 29.274 14.683

154.286 0.776 3.437 2.642 0.243 29.274 14.683

180 0.776 3.437 2.647 0.243 29.274 14.683

205.714 0.777 3.437 3.476 0.243 29.274 14.681

231.429 0.785 3.436 -1.992 0.243 29.274 15.808

257.143 0.841 3.452 -7.322 0.243 29.274 -162.963

282.857 -1.718 227.505 184.086 0.243 29.317 -4.244

308.571 1.711 1.241 -108.459 0.243 19.898 1.243

334.286 -9.111 4.546 -327.921 0.242 33.896 15.879

360 -9.605 6.761 -105.682 0.263 29.27 15.953

SUPPLEMENTARY TABLE - 2: Hornbill first passage times at fringes of home range for α = 2.
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