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Abstract. Quantification of habitability is a complex task. Previous at-
tempts at measuring habitability are well documented. Classification of
exoplanets, on the other hand, is a different approach and depends on
quality of training data available in habitable exoplanet catalogs. Clas-
sification is the task of predicting labels of newly discovered planets
based on available class labels in the catalog. We present analytical
exploration of novel activation functions as consequence of integra-
tion of several ideas leading to implementation and subsequent use in
habitability classification of exoplanets. Neural networks, although a
powerful engine in supervised methods, often require expensive tun-
ing efforts for optimized performance. Habitability classes are hard to
discriminate, especially when attributes used as hard markers of sepa-
ration are removed from the data set. The solution is approached from
the point of investigating analytical properties of the proposed activa-
tion functions. The theory of ordinary differential equations and fixed
point are exploited to justify the “lack of tuning efforts” to achieve
optimal performance compared to traditional activation functions. Ad-
ditionally, the relationship between the proposed activation functions
and the more popular ones is established through extensive analyti-
cal and empirical evidence. Finally, the activation functions have been
implemented in plain vanilla feed-forward neural network to classify
exoplanets. The mathematical exercise supplements the grand idea of
classifying exoplanets, computing habitability scores/indices and au-
tomatic grouping of the exoplanets converging at some level.
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1 Introduction

Since time immemorial, humanity was looking at cosmos and believing other worlds
being out there, inhabited with other or, may be same, beings like us. Indian ancient
texts talk about travelling to other worlds in “bodily form” (inscription on the iron
pillar at Qutub Minar, probably left in 4th century BC). Ancient Greeks also believed
in the existence of other planetary bodies with beings living on them (with mentions
dating as far back as 6th century BC: Thales of Miletus and Pythagoras). With
our technological advances, we are continuing this same quest – the quest for the
habitable planet, ultimately, the second Earth; or at the least, for the answer to the
question of whether we are alone in the Universe. Currently, we already know about
the existence of thousands of exoplanets, and the estimates of the actual number of
planets exceed the number of stars in our Galaxy alone by orders of magnitude (both
bound and free-floating); small rocky planets, super-Earths, the most abundant type.
Our interest in exoplanets lies in the fact that, anthropically, we believe that life can
only originate and exist on planets, therefore, the most fundamental interest is in
finding a habitable planet – the planet with life on it. This quest can be broadly
classified into the following: looking for Earth-like conditions or the planets similar
to the Earth (Earth similarity), and looking for the possibility of life in a form known
or unknown to us (habitability). But what is habitability? Is it the ability of a planet
to beget life – a potential habitability? Or is it our ability to detect it: a planet may
host life as we know it, in other words, be inhabited, but we will not detect it unless
it evolved sufficiently to change the environment on a planetary scale. In both cases,
the only comparison for recognition is our planet, therefore, we are looking for the
terrestrial likeness in exoplanets.

Exoplanets are planets that are found to be orbiting around stars beyond our solar
system. NASA’s Kepler mission and TESS have found more than 4000 exoplanets in
the universe. The most exciting question that scientists want to explore is the potency
of life on these planets. Apparently, the possibility of life is largely due to the presence
of liquid water, and similar related characteristics exhibited by these planets. Hence,
if a planet is at a reasonable distance from its star, it exhibits possibility of being
habitable because correct temperature range could support water on its surface.
Out of 4000 planets, quite a few are observed to be in the habitable zone of their
star. Statistically, there are 40 Exoplanets that have been discovered in the year
2020, and the most interesting discovery of the latest earth-like planet is TOI 700d.
Measurements like size, mass, composition and density of TOI 700d are close to those
of the earth. TOI 700d orbits around its star with the orbital period of 37.4 days and
its distance from the star supports a temperature range that could possibly harbour
life. Another interesting discovery, Kepler-1649c, which orbits a red-dwarf star is also
found to be a potentially habitable exoplanet. It is located at the habitable distance
from its star, and there is a possibility that liquid water may exist on its surface.
Kepler-1649c is uncovered to be potentially habitable as its size and temperature are
found to be earth-like though its surface is rocky. With large number of exoplanets
being discovered each year, the scope to explore planets outside solar system in
terms of chances to support life increases by many folds. Though, there are many
aspects which are still unexplored like presence of an atmosphere on these exoplanets.
Another exciting exoplanet TRAPPIST 1d, which orbits around a ultracool dwarf
star, about 40 light years away from earth, has been placed within the habitable
zone. It has a terrestrial atmosphere and has about 5% of its surface in liquid water
that could possibly be life friendly. The mass, radius, surface gravity and composition
of TRAPPIST-1d are very similar to those of earth that makes the exoplanet very
intriguing in the exploration of habitability.
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Fig. 1. 51-Pegasi-b: Image of the first exoplanet discovered, image taken from [1] is an
artistic representation of the planet.

Back in the year 1995, two Swiss astronomers (Didier Patrick Queloz and Michel
Mayor) made an exciting discovery of the first extra-solar planet that orbits around
its star outside our solar system. This discovery completely changed the perspective
of the astronomers and lead to beginning of an era where more and more exoplanets
were discovered and their physical conditions and chemical compositions were stud-
ied. Didier Patrick Queloz is a professor of Physics at the University of Cambridge.
He obtained his MSc from the University at Geneva. He also received his DEA in
Astronomy and Astrophysics and subsequently obtained his PhD under the super-
vision of Michel Mayor. He is also a fellow of Trinity College, Cambridge. Michel
Mayor is an astrophysicist in the department of Astronomy at University of Geneva.
In 1995, Didier and his advisor Mayor discovered first extrasolar planet 51 Pegasi b
(Fig. 1), that orbits around a sun-like star located 50 light years from earth. This
discovery lead to the most significant revolution in astronomy because until then,
no exoplanet that exist outside our solar system had been found. This discovery
had transformed the idea about cosmic world and more than 4000 exoplanets have
been discovered in the universe since then. Both Didier and his advisor Michel have
been jointly awarded the 2019 Nobel prize in Physics for their pioneering advances
for discovering the exoplanet. As more planets are being discovered, the curiosity
of finding possibility of life is also building up and consequently, extensive studies
related to life-sustaining characteristics of already discovered extra-solar planets is
gaining momentum.

1.1 Habitability: Quantification or classification?

Quantification of habitability is a challenging task, for a couple of reasons at least. The
first is to be able to define an index for habitability and more importantly, address
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questions about such indices, if in vogue, are good indicators or not. There exists
a general public and scientist common misinterpretation of habitability concept. A
very small group of astronomers has been vocal against habitability quantification.
This does not represent the consensus of the community which is still developing
habitability indices in one form or another. A recent white paper by Mendez et al.
[2] argues for habitability fundamentally reliant on the availability of raw materials
and energy to assemble and maintain life. The authors presented arguments in favor
of analogy between habitability and the classical elements. They also formalized the
concept in to a general quantitative framework. If habitability is proportional to the
mass and energy available for life, their definition is consistent with the habitability
models developed in ecology and accommodates energy considerations. The authors
claim their model is applicable to any type of environment, from micro-environments
to entire biospheres. While we wait for the ramifications and working of the model
(the habitability master equation) to be made available to the community in due time,
we propose an alternative strategy to examine habitability in quantitative manner.
We begin by asking a couple of pertinent questions. Shall we adopt full-scale Machine
Learning approach, with other planets as training set and be able to answer questions
such as “Is this new planet potentially habitable based on training data?” and “How
potentially habitable is this new planet based on our experience of previously labelled
ones with identical attributes?” This, however, depends on the quality of training data
and classification paradigms of choice. For example, we can consider three classes:
non-habitable, mesoplanet and psychroplanet (refer to Sect. 4.1) as training data
with labels for a supervised inference.

With a constantly increasing number of discovered exoplanets and the possibility
that stars with planets are a rule rather than an exception, it became possible to
begin characterizing exoplanets in terms of planetary parameters, types, populations
and, ultimately, in the habitability potential. This is also important in understanding
the formation pathways of exoplanets. But, since complete appraisal of the potential
habitability needs the knowledge of multiple planetary parameters which, in turn,
requires hours of expensive telescope time, it became necessary to prioritise the plan-
ets to look at, to develop some sort of a quick screening tool for evaluating habitability
perspectives from observed properties. Here, the quick selection is needed for a long
painstaking spectroscopic follow-up to look for the tell-tales of life – the biosigna-
tures – atmospheric gases that only living organisms produce in abundance. It can
be oxygen, ozone, methane, carbon dioxide or, better, their combinations ([3,4], and
references therein). For all the upcoming space missions dedicated to the search of
life in the Universe: PLATO, Euclid, JWST, etc., we need to make a list of our
preferred candidates, so that this quest hopefully can be completed within our life-
times. Extrapolation of Kepler’s data shows that in our Galaxy alone there could
be as many as 40 billion such planets [5–7]. And it is quite possible that soon we
may actually detect most of them. But with the ultimate goal of a discovery of life,
astronomers do not have millennia to quietly sit and sift through more information
than even pentabytes of data.

However, all classification strategies have caveats, and some [8] reject the exercise
entirely on the basis of impossibility to quantitatively compare habitability, and on
the idea that pretending otherwise can risk damaging the field in the eyes of the public
community. In addition, some researchers believe that the priority for the exoplanet
and planetary science community is to explore the diversity of exoplanets, and not to
concentrate on exclusions. However, it is not impossible to quantify habitability and
the scientific community has been doing this for decades [2]. A classification strat-
egy depends on available data and makes inference based on it, rather than trying
to quantify habitability by defining a range of values. For example, a classification
algorithm with probabilistic herding that facilitates the assignment of exoplanets to
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appropriate classes via supervised feature learning methods, producing granular clus-
ters of habitability, may be a more rational alternative. Classification methods rely
on using Machine Learning algorithm to construct and test planetary habitability
functions with exoplanet data. The goal is to identify potentially habitable planets
from exoplanet dataset. These methods provide one important step toward automat-
ically identifying objects of interest from large datasets by future ground and space
observatories.

1.2 Classification of exoplanets

Astronomers and philosophers have been intrigued by the fact that the Earth is
the only habitable planet within the solar system. There has been scant evidence
or explorations in the direction of finding planets outside the solar system which
may harbor life. Essentially, the mission to find “Earth 2.0” gained momentum in
recent times with NASA spearheading Kepler [9] and other missions. Initial mis-
sions exploring Earth’s neighbors, Mars and Venus, did not yield promising results.
However, NASA’s missions in the past two decades led to discoveries of hundreds
of exoplanets – planets that are outside our solar system, also known as extra-solar
planets. The missions are carried out based on the inference that planets around stars
are more frequent and the fact that actual number of planets far exceeds the num-
ber of stars in our galaxy. The mandate is to look for interesting samples from the
pool of recently discovered exoplanet database [10]. Additionally, finding “Earth 2.0”
based on similarity metric [9,11,12] is not the only approach. In fact, the approach
has its own limitations as astronomers argue that a distant “Earth-similar” planet
may not be habitable and could be just statistical mirage [13]. Therefore, a classifi-
cation approach should be used to vet habitability scores of exoplanets in order to
ascertain the probability of distant planets harboring life. This begets the need for
sophisticated pipelines. Goal of such techniques would be to quickly and efficiently
classify exoplanets based on habitability classes. This is equivalent to a supervised
classification problem.

The process of discovery of exoplanets involves very careful analysis of stellar
signals and is a tedious and complicated process, as outlined by Bains et al. [14].
This is due to the smaller size of exoplanets compared to other types of stellar
objects such as stars, galaxies, quasars, etc. Radial velocity-based techniques and
gravitational lensing are most popular methods to detect exoplanets. Given the rapid
technological improvements and the accumulation of large amounts of data, it is
pertinent to explore advanced methods of data analysis to rapidly classify planets
into appropriate categories based on the physical characteristics.

The habitability problem has been tackled in different ways. Explicit Earth-
similarity score computation [12] based on parameters mass, radius, surface temper-
ature and escape velocity developed into Cobb–Douglas Habitability Score helped
identify candidates with similar scores to Earth. However, using Earth-similarity
alone [15] to address habitability is not sufficient unless model based evaluations [16]
are interpreted and equated with feature based classification [17]. However, when we
tested methods in [17], it was found that the methods did not work well with pruned
feature sets (features which clearly mark different habitability classes were removed).
Therefore, new machine learning methods to classify exoplanets are a necessity.

To address this need for efficient classification of exoplanets, we embark on design
of novel activation functions in Neural networks with sound mathematical foun-
dations. We shall justify the need to go beyond Sigmoid, hyperbolic tangent and
ReLU activation functions and demonstrate the superior performance of the proposed
activation functions in habitability classification of exoplanets. Such a fundamental
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approach to solving a classification problem has obvious merits and the activation
functions that we propose could be readily applied to problems in other areas as well.

Neural networks [18] or Artificial Neural network (ANN) are systems of intercon-
nected units called “Neurons” organized in layers (loosely inspired by the biological
brain). ANN is a framework for many different machine learning algorithms to pro-
cess complex input data (text, audio, video etc.) in order to “learn” to perform
classification/regression tasks by considering examples and without the aid of task-
specific programming rules. As of today, ANNs are found to yield state-of-the-art
performance in a variety of tasks such as speech recognition, computer vision, board
games and medical diagnosis [19,20] and classification of exoplanets [17].

Every neuron in ANNs is followed by an activation function which defines the
output of that neuron given its inputs. It is an abstraction representing the rate of
action potential firing in the neuron. In most cases, it is a binary non-linear function
– the neuron either fires or not. The celebrated sigmoidal activation function enables
a feed-forward network with a single hidden layer containing a finite number of neu-
rons to approximate a wide variety of linear and non-linear functions [21]. Recent
works have shown that activation functions allow neural networks to perform com-
plex tasks, including gene expression analysis [20] and solving nonlinear equations
[19]. The most popular activation functions are sigmoid, hyperbolic tangent (tanh)
and ReLU (Rectified Linear Unit). Neural networks, although a powerful engine,
often require expensive “parameter-tuning” efforts. Classification of exoplanets is an
intriguing problem and extremely hard, even for a neural network to solve, especially
when clear markers for separation of habitability classes (i.e. features such as sur-
face temperature [22] and features related to surface temperature) are removed from
the feature set. To this end, a version of ANNs, replicated weight neural network
(RWNN), in conjunction with sigmoid activation, has been applied to the task of
classification of exoplanets [17]. However, the results turned out to be less than sat-
isfactory. Added to that, the effort in parameter tuning [23], the outcome is far from
desired when applied to pruned feature sets used in this paper (please refer to the
Data section).

In this work, we explore novel activation functions as a consequence of integration
of several ideas leading to implementation and subsequent use in habitability clas-
sification of exoplanets. The relationship between the proposed activation functions
and the existing popular ones will be established through extensive analytical and
empirical evidence.

One of the key reasons to classify exoplanets is the limitation of finding out
habitability candidates by Earth similarity alone, as proposed by several metric based
evaluations, namely the Earth Similarity Index, Biological Complexity Index [24],
Planetary Habitability Index [10] and Cobb–Douglas Habitability Score (CDHS) [12].
In [25], an advanced tree-based classifier, Gradient Boosted Decision Tree (improved
version of Decision tree [26]) was used to classify Proxima b and other planets in the
TRAPPIST-1 system. The accuracy was near-perfect, providing a baseline for other
machine classifiers [27]. However, that paper considered surface temperature as one
of the attributes/features, making the classification task significantly easier than the
proposed one in the current manuscript.

2 Motivation and contribution

Observing exoplanets is no easy task. In order to draw a complete picture of any
exoplanet, observations from multiple missions are usually combined. For instance,
the method of radial velocity can give us the minimum mass of the planet and the
distance of the planet from its parent star, transit photometry can provide us with
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information on the radius of a planet, and the method of gravitational lensing can
provide us the information regarding the mass. In contrast to this, stars are generally
easier to observe and profile through various methods of spectrometry and photom-
etry in different ranges of wavelengths of the electromagnetic spectrum. Hence, by
the time a planet has been discovered around a star, we would possibly have fairly
rich information about the parent star, and this includes information such as the
luminosity, radius, temperature, etc. Therefore, the uniqueness of the approach is to
classify exoplanets based on smaller sets of observables as features of the exoplanet
along with multiple features of the parent star. We elaborate each case of carefully
selected features in the Experiments section. We note, most of the sub-sets of fea-
tures created from PHL-EC do not contain surface temperature. Added to that, these
surface temperature values are modeled values and not measured values. In fact, the
most interesting result of the paper might be that some of the methods are unable to
exactly reproduce the correct classification, given the strict dependence of the clas-
sification on a single feature, surface temperature namely. Surface temperature is a
hard marker when it comes to classifying exoplanets. Removing this feature enhances
the complexity of classification many folds. Our manuscript tackles the challenge by
adopting a foundational approach to activation functions.

However a reasonable question arises. When there exist activation functions in
literature with evidence of producing good performance, is there a need to define
a new activation function? If indeed the necessity is argued, can the new activa-
tion function be related to existing ones? We are motivated by these questions and
painstakingly address these in subsequent Sections 4–9 in the manuscript. We show
the activation functions proposed in the paper, SBAF and A-ReLU are indeed gen-
eralizations of popular activations, Sigmoid and ReLU respectively. Moreover, the
theory of Banach spaces and contraction mapping has been exploited to show that
SBAF can be interpreted as a solution to first order differential equation. Further, the
theory of fixed point and stability has been used to explain the amount of effort saved
in tuning parameters of the activation units. In fact, this is one of the hallmarks of the
paper where we intend to show that our activation functions implemented to tackle
the classification problem are “thrifty” in comparison to Sigmoid and ReLU. We
demonstrate this by comparing system utilization metrics such as runtime, memory
and CPU utilization. Additionally, we show that SBAF also satisfies the Univer-
sal Approximation Theorem and can be related to regression under uncertainty. We
also demonstrate mathematically and otherwise that the approximation to ReLU,
defined as A-ReLU is continuous and differentiable at “knee-point” and establish the
fact that A-ReLU does not require much parameter tuning. Extensive experimenta-
tion shows conclusively, the insights gained from the mathematical theory are backed
up by performance measures, beating Sigmoid and ReLU. Another commonly used
approach found in many texts on machine learning/deep learning is the application
of several different methods on the same data set and choose the one with the best
performance. We, in the present work, chose to deviate from such approaches as it
fails to provide solid reasons to choose one method over another before experiments
begin. Rather, our approach is the search for a method with lasting impressions in
literature, by focusing on the theoretical nuances. In summary, we state the follow-
ing to argue for such rigorous and mathematical approach to activation functions in
Neural Network based classification.

– Instead of a long list of comparative performance among different classifiers, we
propose a parsimonious way to run a neural network.

– We propose “activation” reliant method. Dense neural networks such as RWNN
or GAN are replaced by proposing novel activation functions in a simpler neural
network architecture (see Sects. 5 and 6).
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– We presented a bare-bones implementation of our method from scratch, called
SYM-Net, instead of porting standard and already optimized libraries. These
libraries are available on Github1 (see Sect. 9).

– Instead of dealing with the process of tuning parameters in activation units, we
proposed methods to choose optimal parameter settings (see Sects. 7 and 8).
These sections provide arguments and proofs in favor of viable alternative to
dense network architectures discussed in Section 4.

– All of the items listed above required rigorous mathematical investigation includ-
ing proving theoretical results.

Apart from original contributions to machine learning literature, the theoretical
exercise helped us reach optimal performance to a challenging classification problem.
The presentation of proposed analytical methods also are motivated by optimal sys-
tem/hardware utilization as many deep learning architectures in recent times trigger
concerns about heavy carbon footprint [28]. We will show, in the due course, that
our method is thrifty in computing resource utilization compared to other activation
functions commonly used.

3 Exoplanets: Habitability indices

In the last decade, thousands of planets are discovered in our Galaxy alone. The
inference is that stars with planets are a rule rather than exception [29], with esti-
mates of the actual number of planet exceeding the number of stars in our Galaxy by
orders of magnitude [30]. The same line of reasoning suggests a staggering number of
at least 1024 planets in the observable Universe. The biggest question posed therefore
is whether there are other life-harbouring planets. The most fundamental interest is
in finding the Earth’s twin. In fact, Kepler space telescope [31] was designed specifi-
cally to look for Earth’s analogs – Earth-size planets in the habitable zones (HZ) of
G-type stars [32]. More and more evidence accumulated in the last few years suggests
that, in astrophysical context, Earth is an average planet, with average chemistry,
existing in many other places in the Galaxy, average mass and size. Moreover, recent
discovery of the rich organic content in the protoplanetary disk of newly formed star
MWC 480 [33] has shown that neither is our Solar System unique in the abundance
of the key components for life. Yet the only habitable planet in the Universe known
to us is our Earth.

The question of habitability is of such interest and importance that the theoreti-
cal work has expanded from just the stellar HZ concept to the Galactic HZ [34] and,
recently, to the Universe HZ – asking a question which galaxies are more habitable
than others [35]. However, the simpler question – which of thousands detected planets
are, or can be, habitable is still not answered. Life on other planets, if exists, may be
similar to what we have on our planet, or may be in some other unknown form. The
answer to this question may depend on understanding how different physical plane-
tary parameters, such as planet’s orbital properties, its chemical composition, mass,
radius, density, surface and interior temperature, distance from its parent star, even
parent star’s temperature or mass, combine to provide habitable conditions. With
currently more than 1800 confirmed and more than 4000 unconfirmed discoveries2,
there is already enormous amount of accumulated data, where the challenge lies in
the selection of how much to study about each planet, and which parameters are of
the higher priority to evaluate.

1 https://github.com/sahamath/SYM-Net
2 Extrasolar Planets Encyclopedia, http://exoplanet.eu/catalog/

https://github.com/sahamath/SYM-Net
http://exoplanet.eu/catalog/
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Several important characteristics were introduced to address the habitability ques-
tion. Reference [36] first addressed this issue through two indices, the Planetary
Habitability Index (PHI) and the Earth Similarity Index (ESI), where maximum, by
definition, is set as 1 for the Earth, PHI=ESI=1.

ESI represents a quantitative measure with which to assess the similarity of a
planet with the Earth on the basis of mass, size and temperature. But ESI alone is
insufficient to conclude about the habitability, as planets like Mars have ESI close to
0.8 but we cannot still categorize it as habitable. There is also a possibility that a
planet with ESI value slightly less than 1 may harbor life in some form which is not
there on Earth, i.e. unknown to us. PHI was quantitatively defined as a measure of
the ability of a planet to develop and sustain life. However, evaluating PHI values
for large number of planets is not an easy task. In [37], another parameter was intro-
duced to account for the chemical composition of exoplanets and some biology-related
features such as substrate, energy, geophysics, temperature and age of the planet –
the Biological Complexity Index (BCI). Here, we briefly describe the mathematical
forms of these parameters.

Earth Similarity Index (ESI). ESI was designed to indicate how Earth-like an
exoplanet might be [36] and is an important factor to initially assess the habitability
measure. Its value lies between 0 (no similarity) and 1, where 1 is the reference value,
i.e. the ESI value of the Earth, and a general rule is that any planetary body with
an ESI over 0.8 can be considered an Earth-like. It was proposed in the form

ESIx =
(

1−
∣∣∣∣x− x0

x+ x0

∣∣∣∣)w , (1)

where ESIx is the ESI value of a planet for x property, and x0 is the Earth’s value
for that property. The final ESI value of the planet is obtained by combining the
geometric means of individual values, where w is the weighting component through
which the sensitivity of scale is adjusted. Four parameters: surface temperature Ts,
density D, escape velocity Ve and radius R, are used in ESI calculation. This index
is split into interior ESIi (calculated from radius and density), and surface ESIs
(calculated from escape velocity and surface temperature). Their geometric means
are taken to represent the final ESI of a planet. However, ESI in the form (1) was
not introduced to define habitability, it only describes the similarity to the Earth in
regard to some planetary parameters. For example, it is relatively high for the Moon.

Planetary Habitability Index (PHI). To actually address the habitability of a
planet, reference [36] defined the PHI as

PHI = (S · E · C · L)1/4
, (2)

where S defines a substrate, E – the available energy, C – the appropriate chemistry
and L – the liquid medium; all the variables here are in general vectors, while the cor-
responding scalars represent the norms of these vectors. For each of these categories,
the PHI value is divided by the maximum PHI to provide the normalized PHI in the
scale between 0 and 1. However, PHI in the form (2) lacks some other properties of a
planet which may be necessary for determining its present habitability. For example,
in Shchekinov et al. [38] it was suggested to complement the original PHI with the
explicit inclusion of the age of the planet [3] (see their Eq. (3)).
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Biological Complexity Index (BCI). To come even closer to defining habitabil-
ity, yet another index was introduced, comprising the above mentioned four param-
eters of the PHI and three extra parameters, such as geophysical complexity G,
appropriate temperature T and age A [37]. Therefore, the total of seven parameters
were initially considered to be important for the BCI. However, due to the lack of
information on chemical composition and the existence of liquid water on exoplanets,
only five were retained in the final formulation,

BCI = (S · E · T ·G ·A)1/5
. (3)

It was found in [37] that for 5 exoplanets the BCI value is higher than for Mars, and
that planets with high BCI values may have low values of ESI.

All previous indicators for habitability assume a planet to reside within in a classi-
cal HZ of a star, which is conservatively defined as a region where a planet can support
liquid water on the surface [39,40]. The concept of an HZ is, however, a constantly
evolving one, and it has been since suggested that a planet may exist beyond the
classical HZ and still be a good candidate for habitability [41,42]. Though presently
all efforts are in search for the Earth’s twin where the ESI is an essential parameter,
it never tells that a planet with ESI close to 1 is habitable. Much advertised recent
hype in press about finding the best bet for life-supporting planet – Gliese 832c with
ESI = 0.81 [43], was thwarted by the realization that the planet is more likely to be
a super-Venus, with large thick atmosphere, hot surface and probably tidally locked
with its star.

The remainder of the paper is organized as follows. We begin with a general
introduction to classification of objects in Astronomy by supervised machine learning
techniques. This includes a primer on data processing and context in classification,
followed by deep architectural interventions in neural networks to achieve reasonable
classification performance metrics. Section 4 is an elaborate journey in that direc-
tion. As deep neural networks are difficult to interpret, we endeavor to treat neural
networks with greater mathematical rigor in the following sections. We hope to not
only accomplish better results but are able to offer explanations for such enhanced
performance. Section 5 offers guiding principles and a novel approach to train neu-
ral networks, backed by mathematical proofs. A novel activation function to train
an artificial neural network (ANN) is introduced in the same section. We discuss
the theoretical nuances of such a function in Section 5. We relate SBAF to binary
logistic regression in Section 6. The following section presents a mathematical treat-
ment of the evolution of SBAF from theory of differential equations. Next section
introduces A-ReLU as an approximation exercise. We follow up with network archi-
tecture in the the next section, detailing the back propagation mechanism paving the
foundation for ANN based classification of exoplanets. Consequently, the following
section presents results on all data sets with performance comparison including sys-
tem utilization. Before we proceed to concluding remarks, we re-assess the habitable
candidate determination problem by an unsupervised clustering method where we
try to pose the habitable planets as anomaly detection problem from a large pool of
exoplanets from the PHL-EC. The goal is to cross-match these candidates obtained
via clustering with the predicted class labels determined by supervised methods as
explained in Sections 5–9. We conclude by discussing the efficacy of the proposed
method.

4 Classification of astronomical objects: Data is the key

The efficacy of machine learning (ML) in characterizing exoplanets into different
classes is a fascinating problem and never been attempted before. The source of



Evolution of Novel Activation Functions... 2641

the data used in this work is University of Puerto Rico’s Planetary Habitability
Laboratory’s Exoplanets Catalog (PHL-EC). The predictive analysis on exoplanets
demands a detailed investigation of the structure of the data and methods that can
be used to effectively categorize new exoplanet samples. The approach needs to be
two-fold. We elaborate on the results obtained by using ML algorithms by stating
the accuracy of each method used and propose a paradigm to automate the task of
exoplanet classification for relevant outcomes. In particular, we focus on the results
obtained by novel neural network architectures for the classification task, as they
have performed very well despite complexities that are inherent to this problem. The
exploration led to the development of new methods fundamental and relevant to the
context of the problem and beyond. The data exploration and experimentation also
result in the development of a general data methodology and a set of best practices
which can be used for exploratory data analysis experiments.

For hundreds of years, astronomers and philosophers have considered the possi-
bility that the Earth is a very rare case of a planet as it harbors life. This is partly
because so far, missions exploring specific planets like Mars and Venus have found
no traces of life. However, over the past two decades, discoveries of exoplanets have
poured in by the hundreds and the rate at which exoplanets are being discovered is
increasing. Scientists are now discussing the conditions, circumstances, and various
possibilities that can lead to the emergence of life [14]. In order to find interesting
samples from the massive ongoing growth in the data, a sophisticated computational
pipeline should be developed which can quickly and efficiently classify exoplanets
based on their physical properties into relevant habitability classes.

Machine classification requires features of data. The features we use for demon-
strating the efficacy of the classifiers are small in number and are related to the
real-world observations of exoplanets. For this, we use the data from PHL’s exo-
planet catalog, and at the present time, given that the number of samples that are
potentially habitable (in the psychroplanet and mesoplanet classes, respectively; elab-
orated in Sect. 4.1), we use all the samples available, but use only a very small set of
planetary parameters. The goal is to develop a pipeline based on various approaches
which can detect interesting exoplanetary samples in databases, quickly after their
discovery, thus potentially accelerating the thermal characterization of exoplanets
before all the attributes are fully discovered and cataloged.

4.1 Data for classification

Combined with stellar data from the Hipparcos catalog [44], the PHL-EC dataset
[10,45] consists of a total of 68 features (of which 13 are categorical and 55 are
continuous valued) and more than 3800 confirmed exoplanets (at the time of writing
of this paper); the catalog includes important features like atmospheric type, mass,
radius, surface temperature, escape velocity, earth’s similarity index, flux, orbital
velocity etc. The PHL-EC consists of observed as well as estimated attributes. Hence,
it presents interesting challenges from the analysis point of view. There are six classes
in the dataset, of which we can use three in our analysis as they are sufficiently
large in size. These are namely non-habitable, mesoplanet, and psychroplanet classes.
These three classes or types of planets can be described on the basis of their thermal
properties as follows:

(1) Mesoplanets: these are referred to as M-planets. These planets have mean
global surface temperature between 0 ◦C and 50 ◦C, a necessary condition for
complex terrestrial life. These are generally referred as Earth-like planets.
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(2) Psychroplanets: these planets have mean global surface temperature between
−50 ◦C and 0 ◦C. Hence, the temperature is colder than optimal for sustenance
of terrestrial life.

(3) Non-habitable: planets other than mesoplanets and psychroplanets do not have
thermal properties required to sustain life.

The remaining three classes in the data are those of thermoplanet, hypopsy-
chroplanet and hyperthermoplanet. However, at the time of writing this paper, the
number of samples in each of these classes is too small (each class has less than 3
samples) to reliably take them into consideration for an ML-based exploration.

While running the classification methods, we consider multiple features of the par-
ent sun of the exoplanets that include mass, radius, effective temperature, luminosity,
and the limits of the habitable zone. In addition to this we consider the following
planetary attributes in separate experimental settings:

(1) Minimum mass and Distance from the parent star, corresponding to obser-
vations of radial velocity.

(2) Mass, corresponding to observations using gravitational microlensing.
(3) Radius, corresponding to observations using transit photometry.

As a first step, data from PHL-EC is pre-processed. An important challenge in
the dataset is that a total of about 1% of the data is missing (with a majority being
of the feature P. Max Mass) and in order to overcome this, we used a simple method
of removing instances with missing data after extracting the appropriate features
for each experiment, as most of the missing data is from the non-habitable class.
Following this, the ML approaches were used on these preprocessed datasets. The
online data source for the current work is available at [46].

4.2 Dense architectures in machine classification

A classification framework works, roughly, in the following manner. There is a data
set with class labels, say +1 or −1, if we assume there are only two classes, namely
stars and quasars. The data set is split into three slices: training, testing and val-
idation. The training slice is usually the largest, consisting of at least 70% of the
total size, used to train the classifier so that it is able to discriminate any new data
point with labels (+1/−1) accurately. The algorithm is expected to learn well so that
the accuracy on the training is 100%. Next, the algorithm is tested on training and
validation slices ensuring that the validation slice does not appear at all during train-
ing. The efficacy of classification is evaluated based on standard performance metrics
enunciated in the results section. For details on machine classification, please refer
to Appendix A. The following are the ML classification algorithms used frequently
in Astronomy data and other areas of Science and Engineering.

– Neural networks: in recent times, artificial neural networks have become the
most popular family of methods for classification [47]. Artificial neural networks
draw inspiration from biology and the mechanism is roughly similar to that of the
functioning of neurons. A network is trained to perform classification of labels by
using gradient descent optimiser [48] that incorporates computing error gradient
at every layer and optimizing the weights in each node in such a way that the
error gets minimized. An example of a neural network is shown in Figure 2.

– Other classifiers: the other popularly used classifiers are those of tree-based
classifiers, probabilistic classifiers, SVM, and KNN [49]. However, the restricted
feature set used as a part of this work is too complicated for conventional machine
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Fig. 2. The basic structure of a neural network. Here, the nodes are represented by the
circles. The nodes labeled i are the input, h are hidden and o are output nodes.

learning methods to handle. The method that we focus on is that of neural net-
works. However, it is important to note that, the level of complexity in the data
responsible for the difficulty in classification of astronomical objects presented in
the current work, could not be mitigated by changing neural network architec-
tures. This is the reason new activation functions and novel theory had to be
invented.

– Neural networks can be used in two novel architectures, namely replicated weight
neural networks (RWNN), and generative adversarial networks for classification.
These are briefly mentioned here, in Appendices B.3.2 and B.3.4 respectively and
explained in detail in Appendices B.3.2–B.3.5. These results have been further
improved (better classification accuracy, machine performance, efficiency etc) by
proposing novel activation functions in a simpler neural network architecture (see
Sect. 5). The improvement in performance is due to dense mathematical structure
and theory demystifying the traditional “black-box” operating paradigm of neural
networks.

4.2.1 Replicated weight neural network (RWNN)

Usually, an Artificial Neural network (ANN) trains itself by updating an initial ran-
dom choice of weights through back propagation. RWNN is a scheme to train the
network, built with randomly initialized weights where learning rate and number of
neurons across layers are kept same as in ANN. The first iteration generates a bal-
anced training set by random-oversampling and trains the network. This is identical
to the original vanilla feed forward neural net. However, a RWNN is different from
a standard ANN architecture in the sense that the optimized weights obtained from
first iteration are utilized in training network during the second iteration. Please refer
to B.3.2 for details (Fig. 3).

4.2.2 Synthetic oversampling using Parzen window estimation

Artificial oversampling [50] is an approach to handle the effects of bias due to a
class with a large sample size [51] in data. Typically, people try to artificially add
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Fig. 3. Architecture pipeline for replicated weight neural network. (For a better readability
please refer to the online version).

samples to the classes with lesser number of samples, namely the mesoplanet and the
psychroplanet classes. Essentially, the paradigm of choice is to analyze the class-wise
distribution of the data and to generate reasonable samples which reflect the general
properties of their respective classes. Please refer to B.3.3 for details.

4.2.3 Generative adversarial networks

Generative adversarial networks (GANs) are a powerful framework of a pair of com-
peting neural networks where the generative network imitates the input and dis-
criminating network differentiates between authentic and synthetic samples. It can
also be used a semi-supervised learning technique where the discriminator learns the
target function based on both labeled and unlabeled generated data. Its a method
worth exploring in binary classification of astronomical objects. Appendices B.3.4–
B.3.6 contain details about GAN implementation on the habitability data set
(PHL-EC).

4.2.4 Training the GAN for categorical semi-supervised learning

Standard GANs can be turned from a discriminator to a classifier that is only useful
for determining whether a given data point x belongs to the input data distribution
or not. For classification, we aim to train a discriminator that classifies the data into
k categories by assigning a label y to each input sample x [52,53]. The Figure B.3
presents an overview of the architecture of the networks (Fig. 4).

We reiterate that, such architectural innovations using dense neural networks
are usually not backed by hard Mathematical proofs as human neural networks are
too complex to mimic. To be precise, it is often, not possible to explain why a
particular architecture such as the one described here, succeeds or fails! For a com-
prehensive introduction on Machine Learning and Neural Networks, please refer to
Appendix B.

Section 4 provides us the necessary information on neural net architectures but
do not elaborate on the alternatives. The first four sections cover the background,
problem perspective and general significance of machine learning methods in the
classification tasks of exoplanets. We now proceed to the crux of the problem solving
which is the deep theoretical analysis of the role of the activation functions in making
efficient neural network based predictions and classification. We begin Section 5 and
hope that the mathematical analysis in Sections 5–7 provides a viable alternative to
dense network architectures discussed in Section 4.
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Fig. 4. Layers of the generator and discriminator in GAN model with batch-size of 128.

5 Saha-Bora Activation Function (SBAF)

We shall introduce SBAF neuron to address the issues elicited in the previous sections.
We begin with a brief description of mathematical concepts and definitions will be
used throughout the remainder of the manuscript.

Definition of key terms:

– Returns to Scale: for the objective function, y = kxα(1 − x)β , k > 0, 0 < α <
1, 0 < β < 1 feasible solution that maximizes the objective function exists, called
an optimal solution under the constraints Returns to scale. When α + β > 1, it
is called increasing returns to scale (IRS) and α + β < 1 is known as decreasing
returns to scale (DRS). α+β = 1 is known as constant returns to scale and ensures
proportional output, y to inputs x, 1−x. y is used to define production functions in
Economics [54] and the form is inspirational to designing the activation functions
proposed in the manuscript. Note, we set β = 1 − α in the activation function
formulation ensuring CRS and therefore existence of global optima.

– Absolute error is the magnitude of the difference between the exact value and the
approximation.

– Relative error is the absolute error divided by the magnitude of the exact value.
– Banach Space: a complete normed vector space i.e. the Cauchy sequences have

limits. A Banach space is a vector space.
– Contraction Mapping: let (X, d) be a Banach space equipped with a distance

function d. There exists a transformation, T such that T : X → X is a con-
traction, if there is a guaranteed q < 1, q may be zero which squashes the dis-
tance between successive transformations (maps). In other words, d(T (x), T (y)) <
qd(x, y) ∀x, y ∈ X. q is called Lipschitz constant and determines speed of con-
vergence of iterative methods.

– Fixed point: a fixed point x∗ of a function f : R → R is a value that is
unchanged by repeated applications of the function, i.e. f(x∗) = x∗. Banach space
endowed with a contraction mapping admits of a unique fixed point. Note, for any
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transformation on Turing Machines, there will always exist Turing Machines
unchanged by the transformation.

– Stability: consider a continuously differentiable function f : R → R with a fixed
point x∗, f(x∗) = x∗. The fixed point x∗ is defined to be stable if f ′(x∗) < 1. If
f ′(x∗) > 1, then x∗ is defined as unstable.

– First Return Map: consider an iterative map on the set S, f : S → S. Starting
from an initial value x0 ∈ S, we can iterate the map f to yield a trajectory:
x1 = f(x0), x2 = f(x1) and so on. The first-return map is a plot of xn+1 vs. xn
for integer n > 0 .

– Contour Plot: a contour plot is a 2-D representation of a 3-D surface. An alterna-
tive to surface plot, it provides valuable insights to changes in y as input variables
x&1− x change.
This section defines SBAF [23,55], computes its derivative and focuses on estima-

tion of parameters used in the function. We compute the derivative of SBAF for two
reasons: to use the derivative in back-propagation and to show that SBAF possesses
optima instead of saddle point (note, sigmoid has saddle point). SBAF, defined with
parameters k, α (these will be estimated in subsequent sections and no effort is spent
on tuning these parameters while training) and input x (Data in the input layer),
produces output y as follows:

y =
1

1 + kxα(1− x)1−α ;

⇒ lny = ln1− ln(1 + kxα(1− x)1−α)

= −ln(1 + kxα(1− x)1−α)

⇒ 1
y

dy

dx
= − 1

(1 + kxα(1− x)1−α)
·
[
kαxα−1(1− x)1−α − kxα(1− α)(1− x)1−α−1

]
= − k

(1 + kxα(1− x)1−α)
·
[
αxα−1(1− x)1−α − (1− α)xα(1− x)−α

]
⇒ dy

dx
= −y2

[
α

x
− (1− α)

1
1− x

]
kxα(1− x)1−α

= −y2

[
α(1− x)− (1− α)x

x(1− x)

]
kxα(1− x)1−α

= −y2

[
α− x
x(1− x)

]
kxα(1− x)1−α. (4)

From the definition of the function, we have:

y =
1

1 + kxα(1− x)1−α

⇒kxα(1− x)1−α =
1− y
y
·

(5)

Substituting equation (5) in (4),

dy

dx
= −y2 · α− x

x(1− x)
· 1− y

y

=
y(1− y)
x(1− x)

· (x− α).
(6)
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Fig. 5. Surface Plot of SBAF: The x-axis shows x, and the y axis shows α, both varied
from 0 to 1. k is fixed to 1.

Fig. 6. Contour plot for SBAF, with x and α varied from 0 to 1. k is fixed to 1.

Figures 5 and 6 show various plots of the activation function. Figure 5 shows a
surface plot by varying x and α. Figure 6 shows the contour plot. In both plots,
we fixed k = 1. Note that the contour plot reveals a symmetry about x = α. Fur-
ther, as discussed in Section 8, the approximation of other activation functions using
SBAF can be quite easily seen in the contour plot, by looking at the horizontal lines
corresponding to α = 0 and α = 1.

We note, the motivation of SBAF is derived from using kxα(1 − x)1−α as dis-
criminating function to optimize the width of the two separating hyperplanes in an
SVM-like formulation. This is equivalent to the CDHS formulation when CD-HPF
[12] is written as y = kxα(1 − x)β where α + β = 1, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, and k is
suitably assumed to be 1 (CRS condition). The representation ensures global maxima
(maximum width of the separating hyperplanes) under such constraints [12]. Please
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also note, when β = 1 − α, CRS condition [25] is satisfied automatically and we
obtain the form of the activation, SBAF.

Our activation function has an optima. From the visualization of the function
below, we observe less flattening of the function, tackling the “vanishing gradient”
problem. Moreover, since 0 ≤ α ≤ 1, 0 ≤ x ≤ 1, 0 ≤ 1− x ≤ 1, we can approximate,
kxα(1−x)1−α to a first order polynomial. This helps us circumvent expensive floating
point operations without compromising the precision.

5.1 Existence of optima: Second order differentiation of SBAF for neural
network

From equation (6),

dy

dx
=
y(1− y)
x(1− x)

· (x− α).

It is easy to see,

⇒
d2y

dx2
= −

x(1 − x)(α − x) · (1 − 2y) ·
[
y(1−y)
x(1−x) · (α − x)

]
+ x(1 − x) · y(y − 1) + y(y − 1) · (α − x) · (1 − 2x)

(x(1 − x))2

= −
y(y − 1)[x(1 − x) + (α − x) · (1 − 2x) + (α − x)2 · (1 − 2y)]

(x(1 − x))2

when α = x,

⇒ d2y

dx2
= −x(1− x) · y(y − 1)

(x(1− x))2

=
y(1− y)
x(1− x)

·

Clearly, the first derivative vanishes when α = x, and the derivative is positive
when α < x and is negative when α > x (implying range of values for α so that
the function becomes increasing or decreasing). We need to determine the sign of
the second derivative when α = x to ascertain the condition of optima (correspond-
ing to minima of gradient descent training ensuring optimal discrimination between
habitability classes). Assuming 0 < x < 1, the condition of optimality, 0 ≤ α ≤ 1, y
by construction lies between (0, 1). Hence, d2y

dx2 > 0 ensuring optima of y (Fig. 7).

5.2 Saddle points of sigmoid activation and a comparative note with SBAF

We note briefly that as opposed to the sigmoid activation function, SBAF has local
minima and maxima. For example, for k = 0.91, α = 0.5, a local minima occurs
at x = α. On the other hand, the sigmoid function has neither local minima nor
maxima; it is easy to show that it only has a saddle point at x = 0: SBAF, however,
has a critical point at x = α.

Proof. Note that if f(x) denotes the sigmoid function, then f ′(x) = f(x)(1 −
f(x)); f ′′(x) = f(x)(1−f(x))(1−2f(x)). Then, f ′(x) = 0 implies that f(x) ∈ {0, 1}.
However, for both these values, the second derivative is 0. �

5.3 Visual analysis of SBAF

Figures 8–11 show different plots for SBAF by varying k and α.
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Fig. 7. Plot of SBAF function: it shows a minima for all values of k(0.90−0.98) at x = 0.5.
Empirical test for stability confirms stable fixed point at k = 0.98, α = 0.5 (Note, mimima
of SBAF is obtained at x = α and thus we set α = 0.5). These are the k, α values we used
in SBAF to train the classifier.

Fig. 8. Behavior of SBAF under different values of input, x. (a) Visualization of the activa-
tion: local oscillation seems to be absent. (b) Visualization of the activation: local oscillation
seems to be absent.

5.4 Monotonicity of SBAF

It has not escaped our notice that SBAF is a non-monotonic function, if analyzed over
the entire domain. We argue that activation functions in neural networks do not need
to be monotonically increasing, or more generally, monotone at all. As an example,
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Fig. 9. 2-D plot of SBAF, α,K are varied in the admissible ranges for minima and fixed
point of the SBAF (we establish later that SBAF has a fixed point for k > 0.9). We observe
monotone behavior of SBAF.

Fig. 10. 2-D plot of SBAF, α, is kept in the neighborhood of 0.5 for local minima and
k is varied in the admissible ranges (0.91 for stable fixed point of SBAF). We observe
non-monotone behavior of SBAF.

consider the simple parabola, f(x) = x2, a clearly non-monotonic function. Indeed,
for α = 1, the Taylor series of SBAF is indeed parabolic (for reference, this expansion
is f(x) = 1−kx+k2x2+O(x3)). If we were to coerce this into a monotonic function, we
might consider using f(x) = −x2 for x < 0. Our intuition is that if a neural network
does not “like” the non-monotonic behavior of the standard parabolic activation
function, it may simply set the corresponding weight (for two specific neurons in
adjacent layers) to the opposite sign of if we had used the “coerced” version instead.
Additionally, we need to observe that SBAF satisfies Cybenko Approximation and
the non-monotonicity of SBAF has no effect on Cybenko (see Sect. 5.6).

To demonstrate this without going off-topic, we train a convolutional neural net-
work with only parabolic activations (except for the last layer, where we use softmax)
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Fig. 11. Plot of f = 1
1+kxα(1−x)1−α , SBAF, α is kept constant (α = x = 0.5) and k is

varied in the admissible range.

on the MNIST dataset for 20 epochs. For simplicity, we optimize the cross-entropy
loss using SGD with a constant learning rate of 0.1. To eliminate the possibility of a
chance result, we run the model 20 times. We observe a median accuracy of 96.24%
and an inter-quartile range of 3.29 (25th percentile 93.98%, 75th percentile 97.27%).
Clearly, the network did not have trouble performing well with this activation.

Briefly, the CNN we used had 5 Conv – BatchNorm – Parabola blocks. In the
second and fourth blocks, we add a max pooling layer after the convolution. In the
fifth block, we flatten the results of the Conv layer and then add a linear layer before
batch normalization. All convolution layers use a kernel size of 3, and we use 32 filters
in the first two convolutions, 64 in the next two, and 128 in the last one. We use
valid padding in the first two convolutions, and same padding in the others.

As further proof of the efficacy of our proposed activation function, prior work
by Saha and his group, Makhija et al. [56] uses a special case of our activation
function in the discriminator network of a Generative Adversarial Network (GAN)
to achieve exemplary performance in separating stars from quasars, outperforming
the same architecture with the sigmoid activation. We defer to Makhija et al. [56] for
a more detailed explanation of the method. The same activation was also used on the
Gene Expression Omnibus (GEO) dataset by Sridhar et al. [57], and was found to
outperform both the sigmoid and ReLU activations. These empirical evidence aside,
we state that monotonicity is non-essential for Cybenko Universal Approximation
(see Sect. 5.6). We revisit this conjecture in Section 8 at the time of introducing
A-RELU, a variant of SBAF.

5.5 Exploring the vanishing gradient problem for SBAF

The vanishing gradient problem occurs during the phase when a neural network is
trained. On close examination of back propagation, we see that the error gradient
consists of derivative of activation function used in the network (along with the the
other components). Hence to explore the vanishing gradient problem, one needs to
investigate the behaviour of derivative of the activation function. Its important to
note that during back propagation, the derivative keeps getting multiplied with itself
(due to the chain rule used in the computation of gradient), making the gradient
smaller and smaller. As we move all the way till input layer, the gradient vanishes off
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Fig. 12. Sample neural network.

completely from the network resulting in a state where the weights and biases stop
getting updated. If we inspect the derivative (dy/dx) values for sigmoid, its value
is small, for large values of x (x is the net input to neuron). Consequently, in deep
learning models with fairly large number of hidden layers, a small derivative may
lead to a state where the network may not train at all and result in non-convergence.
To investigate whether SBAF suffers from this problem, let’s use a simple 2-layered
neural network (Fig. 12). We assume that the forward pass for one training sample
is completed and we begin with the computation of error gradient (∂ET∂w5

) which is
propagated back to the network. The error gradient with respect to weight w5 can be
shown as (for details, refer equations of Appendix C for computing the error gradient
for output layer).

∂ET
∂w5

=
∂ET
∂yo

· ∂yo
∂xo
· ∂xo
∂w5
·

Performing a close inspection of each derivative term, ∂ET∂yo
and ∂xo

∂w5
holds a value

between 0 and 1. This can be visualized from the derivation in Appendix C.3, ∂ET∂yo
is

same as −(ytarget − yo). Likewise, ∂xo
∂w5

is same as yh and the value of neuron output
with SBAF as activation function, is between 0 and 1 (refer to Fig. 10). Figure 13
demonstrates a plot between dy

dx and x, and the gradient is never zero even for values
of x close to 1. Combining the three terms, one can make out that the derivative can
reach a small value but never zero.

If we go backwards one layer further, and try to compute gradient for hidden
layers as well, (refer Appendix B.2) we see:

∂ETotal

∂w1
=
∂ETotal

∂yo
· ∂yo
∂xo
· ∂xo
∂yh
· ∂yh
∂xh

· ∂xh
∂w1
· (7)

We know ∂ETotal
∂yo

· ∂yo∂xo
is between 0 and 1. The value for ∂xo

∂yh
is same as w5 which

is not zero at any time during the training. We have already seen that derivative of
SBAF represented by ∂yh

∂xh
can become small for high values of x, but never touches

zero. Lastly, ∂xh
∂w1

is the input i1 which is a normalized input feature value. Hence
combing all the five terms we can conclude that the gradient never becomes zero
even at the hidden layers of the network.
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Fig. 13. Plot of dy/dx vs. x.

5.6 Universal approximation theorem for SBAF

It is well known that a feed-forward network with a single hidden layer containing
a finite number of neurons satisfies the universal approximation theorem. This is
important since it guarantees that simple neural networks can represent a wide variety
of interesting linear/non-linear functions (with appropriately chosen parameters).
Cybenko [21] proved one of the first versions of this theorem for sigmoid activation
functions. We show that SBAF is also sigmoidal and hence satisfies the Universal
Approximation Theorem.

Following Cybenko [21], we shall define the following:

– In: n-dimensional unit cube, [0, 1]n.
– C(In): space of continuous functions defined on In.
– M(In): the space of finite, signed regular Borel measures on In.
– σ(t): a univariate function is defined as being sigmoidal if

σ(t)→ 1 as t→ +∞,
σ(t) → 0 as t→ −∞.

– σ is defined to be discriminatory if for a measure µ ∈M(In),∫
In

σ(yTx+ θ) dµ(x) = 0

∀y ∈ Rn and θ ∈ R implies that µ = 0.

Approximation Theorem [21]. Let σ be any continuous discriminatory function.
Then finite sums of the form

G(x) =
N∑
j=1

αiσ
(
yTj x+ θj

)
are dense in C(In). In other words, given any f ∈ C(In) and ε > 0, there is a sum,
G(x), of the above form, for which

|G(x)− f(x)| < ε ∀ x ∈ In.



2654 The European Physical Journal Special Topics

Proof. Please refer to Cybenko [21]. �

Also, it should be noted that by Lemma 1 of [21], any continuous sigmoidal
function is discriminatory. We can thus prove:

Universal Approximation Theorem for SBAF. The proposed function
SBAFk,α(x) satisfies the universal approximation theorem.

Proof. We observe that SBAFk,α(x) (for the choices k = 1 and α = 0, see Sect. 8) is
a continuous sigmoidal function and hence discriminatory. All the conditions of the
approximation theorem are met. �

Thus, SBAF can be used with a feed-forward network with a single hidden layer
containing a finite number of neurons to approximate a wide variety of linear and
non-linear functions.

5.7 SBAF is not a probability density function [58]

Proof. Let us compute the integral below:
∫
I

1
1+kxα(1−x)1−α , where I is the interval

containing (−∞,+∞). We know from earlier calculations, that

y =
1

1 + kxα(1− x)1−α , (8)

and

dy

dx
=
y(1− y)
x(1− x)

· (x− α). (9)

Using the above in the integral and readjusting the limits of integration, we observe
that

∫
0,0

x(1−x)
y(1−y)·(x−α)dy → 0. Note, 0 ≤ f(x) ≤ 1,∀x ∈ (0, 1). Therefore the integral

of f(x) between 0 and 1 would also be less than or equal to 1. Equality will hold iff
f(x) = 1, but this is not possible for any x ∈ (0, 1). �

SBAF is sampled from a probability density function (PDF). SBAF is not a PDF
and we infer that it may oscillate. The next section contains a more pertinent insight,
in clear agreement with the analysis, relating SBAF to regression under uncertainty.

6 Relating SBAF to binary logistic regression: Regression under
uncertainty

Binary logistic regression builds a model to characterize the probability of Yi
(observed value of the binary response variable Y ) given the values of the explanatory
variable xi in the following manner:

log
(

πi
1− πi

)
= α0 + α1xi, (10)

where πi = P (Yi = 1|xi = x) denotes the probability that the response variable
Yi = 1 given the value xi = x, and i stands for the index of the observed sample. The
LHS of equation (10) is known as logit(·) or log-odds. The above formulation leads
to the celebrated sigmoid activation function:

πi =
exp(α0 + α1xi)

1 + exp(α0 + α1xi)
, (11)
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where the regression co-efficients α0 and α1 are to be determined.
Instead, if we formulate the logit as:

log
(

πi
1− πi

)
= −α log(xi)− (1− α) log(1− xi)− log(k), (12)

where 0 < xi < 1, constants k > 0 and 0 ≤ α ≤ 1, then it leads to our proposed
activation function:

πi =
1

1 + kxαi (1− xi)1−α · (13)

Equation (12) can be understood as follows. Firstly, think of {xi} as probabilities
of the observed explanatory variable X instead of the value itself. If X is a binary
discrete random variable, then the quantities − log(xi) and − log(1−xi) would be the
self-information of these two outcomes (measured in bits if the base of the logarithm
is 2). The convex combination of these two self-information quantities is like an
average information quantity (Shannon entropy). In fact, the RHS is upper bounded
by Shannon entropy (if α = xi then RHS is the entropy of {xi}).

Proof. Minimizing/Maximizing (13) is equivalent to maximizing/minimizing its
inverse. We ignore the constant term 1, and assume that k is fixed. Then, the minima
occurs where the derivative is 0:

d

dx

(
kxα(1− x)1−α) = kαxα−1(1− x)1−α − k(1− α)xα(1− x)−α

= kxα−1(1− x)−α (α(1− x)− (1− α)x)

= kxα−1(1− x)−α(α− x).

Clearly, the optima of this, and therefore the optima of (13), occurs when α = xi.
This is the critical point found by visual and theoretical analysis earlier. �

The quantity − log(k) can be thought of as a bias term or the information content
that is universally available (if we think of the RHS as average uncertainty instead
of average information, then this quantity would be the irreducible uncertainty that
is present in the environment, such as noise). Thus, under this scenario, the log-
odds of classifying the binary response variable Y as 1 is a function of the average
self-information of the observed explanatory variable.

This means that if the probability of observed explanatory variable was very
close to zero, then xi would be close to zero and the RHS would also be close to zero
giving the log-odds ratio (LHS) also close to zero. If the probability of the observed
explanatory variable was close to 0.5, then RHS would be very high and the log-odds
ratio (RHS) would be close to 1. Now, as the probability increases towards 1, the
RHS starts to reduce and log-odds ratio (LHS) also starts to reduce. This means that
we trust the observed variable only if it has probability between 0 and 0.5. We do
not trust high values (above 0.5).

Another way to interpret this is that as the uncertainty increases, then the neuron
fires (activates). The neuron in this case continuously increases the magnitude of its
response as the uncertainty increases. The term − log(k) is the ambient noise term,
and the neuron can fire if this is high enough (greater than some preset threshold T ).
The task of regression here is to determine α and k such that it models the binary
response variable Y as a function of the uncertainty of the observed variables (along
with noise in the environment).
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7 Functional properties of SBAF

7.1 Existence of a fixed point

Let us consider the first order differential equation [11]

dy

dx
=
y(1− y)
x(1− x)

· (x− α) (14)

which is a representation of the standard form:

dy

dx
= f(x, y). (15)

In order to prove the existence of a fixed point, we need to show that f(x, y) is a
Lipschitz continuous function. On differentiating y w.r.t x we obtain y as:

f(x, y) =
dy

dx
=
y(1− y)
x(1− x)

∗ (x− α). (16)

When 0 < x < 1, we observe that y < 1. Moreover, when x → 0, y → 1 and
when x → 1, y → 1. In our case, f is a continuous and differentiable function over
the interval [0,1]. This implies f is bounded in (0,1). This further implies that the
function follows the mean value theorem. That is, for some c ∈ (0, 1),

f ′(c) =
f(b)− f(a)

b− a
·

On differentiating f w.r.t x we obtain the following equation

f ′(x, y) =
dy

dx
=
y(1− y)
x(1− x)

· (17)

Since we already know the representation of y in terms of x from (13), we can
substitute the value of y and we obtain the following representation for f :

f ′(x) =
kxα(1− x)(1−α)

(1 + kxα(1− x)(1−α))2
∗ 1
x(1− x)

·

Clearly, the right hand side is bounded between (0, 1) by some positive constant
K. Using the above constraint in the mean value theorem specified, we obtain the
following:

f ′(c) =
f(b)− f(a)
−a

<= K

f(b)− f(a) ≤ K(b− a)
|f(b)− f(a)| ≤ K.

Since a = 0 and b = 1, the above equation is of the form

|f(b)− f(a)| ≤ K|(b− a)|.

Therefore, f is a Lipschitz continuous and by Picard’s theorem, the differential equa-
tion [59] has a fixed point and a unique solution in the form of the activation function,
to be used in neural networks for classification.
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7.2 Lipschitz continuity, contraction map and unique fixed point

In this section, we show that the fixed point is unique in the interval, thus ensuring
that the solution to the DE, SBAF, is unique in that interval. We exploit the Banach
contraction mapping theorem to achieve this goal. We consider the following DE

f(x, y) =
dy

dx
=
y(1− y)
x(1− x)

· (x− α) (18)

y(x0) = y0.

Assume f(x, y) to be continuous on D = (x0 − δ, x0 + δ), (y0 − b, y0 + b). Then ∃
a solution in D. This gives rise to the solution as the activation function, y. Fur-
thermore, if f(x, y) is Lipschitz continuous in D, or in a region smaller than D, the
solution thus found is unique.

Proof. (a) We first prove that f(x, y) is Lipschitz continuous. We write y′ = dy
dx =

f(x, y) = y(1−y)
x(1−x) ∗ (x− α).

Now,

|f(x, y1)− f(x, y2)| =
∣∣∣∣ x− α
x(1− x)

(y1(1− y1)− y2(1− y2))
∣∣∣∣.

Within (0, 1),
∣∣∣ x−α
x(1−x)

∣∣∣ is bounded. The expression blows up at x = 0, 1. There-
fore,

|f(x, y1)− f(x, y2)| ≤ k
∣∣y1 − y2

1 − y2 + y2
2

∣∣
|f(x, y1)− f(x, y2)| ≤ k|y1 − y2 − (y1 − y2)(y1 + y2)|
|f(x, y1)− f(x, y2)| ≤ k|(y1 − y2)(1− y1 − y2)|.

By construction, y1 and y2 are bounded by some positive constant ξ ∈
(0, 1). Therefore, the sum is bounded by 2ξ and |1− (y1 + y2)| ≤ 1 ⇒
|f(x, y1)− f(x, y2)| ≤ k|y1 − y2|.
This implies f(x, y) is Lipschitz continuous in y. We may now proceed to establish
the existence of a unique fixed point i.e. unique solution (activation function) to
the differential equation above.

(b) Let T be a contraction mapping, i.e. T : X → X, where X is a complete metric
space. Then T has a unique fixed point in X [60]. Moreover, let x0 ∈ X, we
define xk by setting an iterative map, xk+1 = T (xk). Let us fix d0 = d(x0, x1).
Then, by Lipschitz continuity

d(xk, xk+1) = d(T (xk−1), T (xk)) ≤ α1d(xk−1, xk)
d(xk, xk+1) ≤ α1d(T (xk−2), T (xk−1))

d(xk, xk+1) ≤ α2
1d((xk−2), xk−1))

...

d(xk, xk+1) ≤ αk1d(x0, x1) = αk1d0.

Clearly, xk is a Cauchy sequence. Since X is a complete metric space, xk → x ∈
X. Thus,

d(T (xk), T (x)) ≤ αd(xk, x)→ 0.
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Thus, T (xk) → T (x). But T (xk) = xk+1. Therefore, T (x) → x, i.e. T (x) = x.
Suppose T (y) = y for y 6= x.

d(x, y) = d(T (x), T (y)) ≤ αd(x, y)
d(x, y) ≤ αd(x, y).

This is possible only if d(x, y) = 0 ⇒ x = y. This implies that the fixed point is
unique. �

We use the following lemma to complete the missing piece. f is continuous and
Lipschitz w.r.t y on the defined domain. Then, there exists a unique fixed point of T
in X. The function y (activation function) is the unique solution. We establish the
fact that the activation function is unique in the interval (0,1).

7.3 Computation of the fixed point

Now that the existence of of the fixed point is established, we proceed to find it in the
following manner. Let us consider the representation of y given by (1). By definition
of fixed point we have T (x) = y(x) = x at the fixed point, i.e.

x =
1

1 + kxα(1− x)1−α = T (x)

x
[
1 + kxα(1− x)1−α] = 1

x+ kxα+1(1− x)1−α = 1

kxα+1(1− x)1−α = 1− x
kxα+1(1− x)−α = 1. (19)

Assume k = 1. Hence, (19) becomes

xα+1(1− x)−α = 1.

On applying log on both sides we obtain

log
(
xα+1(1− x)−α

)
= 0

log xα+1 + log(1− x)−α = 0
(α+ 1) log x− α log(1− x) = 0

α log x+ log x− α log(1− x) = 0
α(log x− log(1− x)) + log x = 0

log
(

1− x
x

)α
= log x.

Thus, α = log x

log 1−x
x

.

7.4 Visual analysis of the fixed point

We use the formula from the above computation and visually represent the activa-
tion function, SBAF, the solution to the differential equation mentioned above. We
observe that, for K = 0.9 onward, we obtain a stable fixed point. SBAF used for
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Fig. 14. First return maps of SBAF for α = 0.5 and various values of k < 0 (top to
bottom, left to right): {−2.0,−1.97,−1.90,−1.75,−1.5,−1.0} indicating absence of a fixed
point. The plot confirms absence of fixed points for all values of k < 0.

training the neural net is able to classify PHL-EC data with remarkable accuracy
when K is very close to 1. Existence of a stable fixed point thus is a measure of
classification efficacy, in this case.

We explore the non-linear dynamics of SBAF. At a fixed point, as noted above,
we have:

kxα+1(1− x)−α = 1.

In the above expression for the fixed point, for all real values of α and when 0 < x < 1,
the left-hand side is always negative if k < 0. Thus, there cannot be any fixed point
for k < 0 when 0 < x < 1. When k > 0, it is possible to have a fixed point x∗. Below
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Fig. 15. First return maps of SBAF for α = 0.5 and various values of k > 0: {0.1, 2.0}
indicating presence of a fixed point.

we plot the first return maps for the SBAF for a few cases with fixed α = 0.5 and
for different values of k (Figs. 14 and 15). We plot only the real values of x (since we
have complex dynamics as x can become a complex number).

We can thus explicitly compute the values of k for which there exists a stable
fixed point when α = 0.5:

kx∗(0.5+1)(1− x∗)−0.5 = 1,

which implies:

k =

√
(1− x∗)
x∗
√
x∗

,

where we seek the fixed point x∗ such that 0 < x∗ < 1, x∗ = SBAF(x∗), and we also
require for stability: |SBAF′(x∗)| < 1. There are an infinite number of stable fixed
points satisfying these conditions. Numerically, we found that x∗ can be any value
in the range 0 < x∗ < 1, and correspondingly, k takes values: ∞ > k > 0 (lower the
x∗, higher the k). For example, if the stable fixed point is x∗ = 1√

2
then k = 0.91018.

When the fixed point varies from 0 to 1, the value of SBAF′(x∗) varies from −0.5 to
0.5 (thus |SBAF′(x∗)| < 1, making it a stable fixed point).

We find it significant to mention that SBAF is inspired from a production function
in economics [61,62] even though the adaptation is non-trivial and significantly more
complex in structure than the Cobb–Douglas production function, CDPF [63–66].
Since CDPF is a production function [67] defined by k, α, β as labor and capital
inputs, a negative value of k implies no quantity is produced, rather borrowing from
market is necessary. This is important since it validates our choice of k in neural net
training from an econometric argument. This is consistent with our assertion that
the choices of parameters for optimal classification performance are not accidental!

As noted above, stable fixed points exists for a range of values of k depending on
the value of x∗ and α. When α = 0.5, we found that there is a stable fixed point for
every 0 < k < ∞. However, classification with SBAF works optimally at k = 0.91
(corresponding x∗ ≈ 1√

2
). This is again consistent with our hypothesis that a stable

fixed point will facilitate classification while chaos might occur otherwise. We have
proven from the first order ODE that a fixed point exists and computed the fixed
point in terms of α by fixing k = 1 and verified the same via simulation. We have also
observed (but not reported here) that altering k values minimally within the stable
fixed point range does not alter classification performance greatly. This reaffirms the
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confidence in the range of k values obtained from fixed point analysis. To sum up,
SBAF is the analytical solution to the first order DE and has a fixed point! This
fixed point analysis is computationally verified and applied in the classification task
on the PHl-EC data, via a judicious choice of parameters.

7.5 Proof of global maxima for the activation

We now go back to an economics perspective of our activation function (or production
function). In this section, we prove the existence of an optimum solution.

Let us consider the activation function:

y =
1

1 + kxα(1− x)1−α (20)

α+ β = 1, where α > 0 and β > 0.
Let S = x and I = (1− x) and 1− α = β. For the constrained case of the above

equation a critical point is defined in terms of the Lagrangian multiplier method.
Suppose the constraint is g = w1S + w2I −m. Let the Lagrangian function for the
optimization problem be:

L =
1

1 + kxα(1− x)1−α − λ(w1S + w2I −m)

L =
1

1 + kSαIβ
− λ(w1S + w2I −m). (21)

On partially differentiating equation (2) with respect to S, I and λ we obtain the
following first order constraints

∂L

∂S
= −ykαSα−1Iβ − λw1 = 0

∂L

∂I
= −ykβSαIβ−1 − λw2 = 0

∂L

∂λ
= −(w1S + w2I −m) = 0.

On differentiate again we obtain the second order condition:

∂2L

∂λ2
= 0

∂2L

∂S2
= −ykα2Sα−2Iβ

∂2L

∂I2
= −ykβ2SαIβ−2

∂2L

∂SI
= −ykαβSα−1Iβ−1

∂L

∂λS
= −w1

∂L

∂λI
= −w2.
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For equation (1) to obtain a optimum max value it subject to the assumed con-
straint, it must satisfy the condition ‖M‖ > 0, where M is the bordered hessian
matrix.

M =

 0 −w1 −w2

−w1 −ykα2Sα−2Iβ −ykαβSα−1Iβ−1

−w2 −ykαβSα−1Iβ−1 −ykβ2SαIβ−2


‖M‖ = w2

1ykβ
2SαIβ−2 + w1w2ykαβS

α−1Iβ−1 + w2
2ykα

2Sα−2Iβ

− w1w2ykαβS
α−1Iβ−1,

‖M‖ = w2
1ykβ

2SαIβ−2 + w2
2ykα

2Sα−2Iβ ,
‖M‖ > 0→ the production function has global optima under CRS.

8 Approximating other activations

In this section, we show the k, α values for which SBAF approximates other activation
functions.

– k = 1, α = 0; SBAF becomes 1
2−x which is what we obtain in sigmoid when we

restrict the Taylor series expansion at 0 of exp(−x) to first order!
– k = 1, α = 1; SBAF becomes 1

1+x which upon binomial expansion (restricting to
first order expansion assuming 0 < x < 1) yields y = 1− x = 1− ReLU.

As noted earlier, these approximations can be seen in Figure 6 along the top and
bottom horizontal edges, which correspond to α = 1 and α = 0 respectively.

8.1 ReLU approximate in the positive half

Consider the function f(x) = kxn. We know that the ReLU activation function is y =
max(0, x). We need to approximate the values n and k such that f(x) approximates
to the ReLU activation function over a fixed interval.

Relative error =
‖f(x)− y‖
‖y‖

·

Let the minimum tolerable error be ε < 10−3

‖f(x)− y‖
‖y‖

≤ ε < 10−3

‖f(x)− y‖ ≤ 10−3‖y‖
‖f(x)‖ ≤ ‖y‖(10−3 + 1)
‖f(x)‖ ≤ 1.001‖y‖
‖f(x)‖ ≤ 1.001‖y‖.

Since f(x) = kxn approximates the positive half (i.e. when x > 0) of the ReLU
activation function, y = max(x, 0), the value of y when x > 0 can be written as:

‖y‖ = ‖x‖.

Using this value in the error calculation we rewrite the error approximation as,

‖kxn‖ ≤ 1.001‖x‖
‖kxn−1‖ ≤ 1.001.
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Fig. 16. ReLU approximation y = kxn. In [0, 10], the values k = 0.54, n = 1.30, correct to
two decimal places, yield the least approximation error as detailed in the text. The values
of k, n are used to train the network with A-ReLU. The two curves intersect at (7.8, 7.8).

The above is an optimization problem i.e. min
∥∥kxn−1

∥∥ subject to the constraints
k > 0, n > 1,−10 < x < 10. We obtain the following bounds on k and n:

0 < k < 1; 1 < n < 2.

Therefore, we obtain the following continuous approximation of ReLU: y = kxn, x > 0
when 0 < k < 1, 1 < n < 2,−10 < x < 10, otherwise y = 0. More precisely, the
approximation to the order of 10−3 is k = 0.54, n = 1.3 (Fig. 16).

8.2 Error approximation and estimation of k and n

Define
L2 =

∑
‖yi − kxni ‖2. (22)

We need to minimize the least square error to approximate the function f(x) =
‖y − kxn‖ to the Relu activation function. This is a continuation in our efforts to
find a continuous and differentiable approximation to ReLU.

Let us fix x between some fixed interval, say 1 < x < 10. This choice is also
justified by observing linear combinations of weights and inputs during the training
where we observed the combination rarely surpassing +3 in the positive half plane.
This means x > 10 would be least likely. Starting with some fixed value of k, say
k = 0.5, we try to approximate the value of n such that the error in approximation
is minimum. Algorithm 1 shows a simple way to achieve this.



2664 The European Physical Journal Special Topics

Algorithm 1: Find k, n with minimum error.
1 min error ←∞;
2 min k ← −1, min n ← −1;
3 for k ← 0.5 to 1 by 0.01 do
4 for n← 1 to 2 by 0.01 do
5 error ← 0;
6 for x← 1 to 10 do
7 error ← sum +(kxn − x)2;
8 end
9 if error < min error then

10 min error ← error;
11 min k ← k;
12 min n ← n;
13 end
14 end
15 end
16 return k, n

f(x) is minimum at k = 0.53 or k = 0.54 when n = 1.3. These are the param-
eter values used to train the network yielding better performance in classification,
compared to ReLU.

8.3 Differentiability of f(x)

f(x) =
{

0, x ≤ 0
kxn, x > 0.

We test for differentiability at x = 0. When x → 0−, f ′(x) = 0. When x → 0+,
f ′(x) = knxn−1 → 0. These derivatives are equal, and thus, the function is differen-
tiable at x = 0. Moreover, the derivative is continuous.

Note: A-ReLU, f(x) = kxn gives rise to f(x) = kx2. Please recall our discussion
in Section 5.4 about non-monotonicity of SBAF and the family of activation functions
SBAF generates. By inspection, we observe that when n = 2, A-ReLU generates a
family of parabolic activation functions, with the degree of freedom on the same
parameter k. Incidentally, this parabolic activation works well in practice for all the
data sets we experimented in this manuscript, for the accepted values of k discussed
in Section 7.4 and above.

8.4 Note about A-ReLU

On plotting the curve for the function, we obtain

f(x) =
{

0, x ≤ 0
kxn, x > 0

for different values of n and k, we have observed that the curve of f(x) for x > 0
increases exponentially with increase in n. Since, the nature of the curve kxn is non
linear when k 6= 0, k 6= 1 and n 6= 0, n 6= 1 it is not meaningful to compute the
absolute error for the entire range on the positive scale from 0 to ∞. Hence, we
have fixed the range of x between 0 to ∞ on the positive scale and −∞ to 0 on the
negative scale. In Section 8.1, we have found the relative error is bounded by ‖x‖.
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In the chosen interval of −∞ < x < 10, we find that the minimum absolute error
is ≈0.75 ± 0.05 when k = 0.53 or k = 0.54, and n = 1.3. This value is quite small
compared to our chosen bound, 10. Hence, we can say that the function f(x) is a
good approximation to the ReLU activation function3.

For a continuous domain, the squared error changes from a sum to an integral.
We take this integral over (0, t), for some t that we choose later. To minimize this, we
take the partial derivatives with respect to k and n, and set them to 0. This yields
two equations, with two unknowns. t can be thought of as the upper limit of the
domain where the approximation is good.

f(k, n) =
∫ t

0

(kxn − x)2dx

=
∫ t

0

(
k2x2n + x2 − 2kxn+1

)
dx

= k2 t
2n+1

2n+ 1
+
t3

3
− 2ktn+2

n+ 2
∂f

∂k
= 2k

t2n+1

2n+ 1
− 2tn+2

n+ 2
= 0

⇒ k
t2n+1

2n+ 1
=

tn+2

n+ 2

⇒ k =
(

2n+ 1
n+ 2

)
t1−n

∂f

∂n
= k2

(
2t2n+1 ln(2n+ 1)

2n+ 1
− 2t2n+1

(2n+ 1)2

)
− 2k

(
tn+2 ln(n+ 2)

n+ 2
− tn+2

(n+ 2)2

)
= 0

⇒ k

(
t2n+1 ln(2n+ 1)

2n+ 1
− t2n+1

(2n+ 1)2

)
=
tn+2 ln(n+ 2)

n+ 2
− tn+2

(n+ 2)2
·

Because it is difficult to a solution to this system of equations analytically, we
simply plot these equations, fixing t = 10. In the graph below, the y-axis is k, and the
x-axis is n. Note that the intersection of the two equations yields the trivial solution
k = n = 1; however, this solution is not very interesting. Instead, we fix the value of
k, and find the intersections with the two curves above. Figure 17 shows this plot.

8.5 Non-monotone activation revisited: Extension of 5.4

We argued in Section 5.4 about the non-necessity of strict monotonicity of activa-
tion functions. We mentioned that parabolic activations, which are not one-to-one
functions, and therefore non-monotone can be derived from the generic class of acti-
vation functions proposed as SBAF family. Precisely, parabolic activation may be
interpreted as an offshoot of A-RELU, in continuity of the discussion in this section.
The theoretical discussion and results (Tab. 5) are now presented below. The general

3 Please note, even if we do not restrict the function in the specified range mentioned
above, we can work with the function itself as another activation function with no discon-
tinuity at x = 0. We choose the value of n between 1 and 2 so that the derivative does not
explode!
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Fig. 17. Plot of the two curves derived analytically, showing the intersection with k = 0.54.
The blue curve is the first one, and the green curve is the second.

parabolic function actually outperforms all of its counterparts and along with the
A-ReLU unit, is one of the best performers.

8.5.1 Standard parabola

y = a ∗ x2 + b ∗ x+ c.

As mentioned in the Introduction above, we take a range of values for x and estimate
values of a, b and c, for which the activation function will be the most effective. In
out initial discussion, we discard c – in order to let the parabola pass through the
origin and also to reduce the number of hyperparameters in the activation unit. Let
us consider only a and b to tune for now (2 at a time), one particular result of optimal
parameters is given below:

y = a ∗ x2 + b ∗ x.
To find the optimal values of the 2 hyperparameters, we use the euclidean distance
between our parabolic function and the standard ReLU function and minimize the
same. Taking a range of input values as (−t, t), the equation is as follows:

min
∫ t

0

(a ∗ x2 + b ∗ x− x)2dx+
∫ 0

−t
(a ∗ x2 + b ∗ x)2dx.

For our experimentation, we take input values in the range (−1, 1). Using this, we
obtain the following range of values of hyperparameters a and b as a = 0.60−0.65,
b = 0.48−0.52.

8.5.2 SBAF based parabola

The first analysis of a non-monotonic function includes a variation of the Saha Bora
Activation Function:

y =
1

1 + k ∗ xα ∗ (1− x)1−α ·

By using α = 1 in the above equation, we get

f(x) =
1

1 + k ∗ x
f(x) = (1 + k ∗ x)−1.
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Now, take k = 1 and expanding the series, we get

(1 + x)−1 = 1− x+ x2 − . . .
(1 + x)−1 = 1− 2 ∗ (1/2) ∗ x+ x2

(1 + x)−1 = x2 − 2 ∗ (1/2) ∗ x+ (1/2)2 − (1/2)2 + 1

(1 + x)−1y = (x− 1/2)2 + 3/4.

8.5.3 A-ReLU based parabola

f(x) =

{
k ∗ xn, if x ≥ 0,
0, if x < 0.

Now here, we shall fix the value of n to 2 and mirror the function over the y-axis to
obtain the following function:

f(x) = k ∗ x2.

Therefore, to sum up the previous two sections, the two parabolic functions con-
sidered along with the standard one are as follows:

f(x) = 1− x+ x2

f(x) = k ∗ x2.

8.6 Functional properties of the parabolic activation functions

8.6.1 Derivative

Derivative of the function, as we know, is essential to be used in back-propagation.
Both the functions SBAF based parabola, and AReLU based parabola are differen-
tiable throughout their domain with the following derivatives:

dy

dx
(1− x+ x2) = −1 + 2 ∗ x

dy

dx
(k ∗ x2) = 2 ∗ k ∗ x.

Similarly, a standard parabola would have the following derivative:

dy

dx
(a ∗ x2 + b ∗ x+ c) = 2 ∗ a ∗ x+ b.

Looking at the functions, we can see that the derivatives are of the order of O(x),
that is, there is a possibility that the gradient could explode during backpropogation.
Therefore, to avoid that, the dataset used during the tests has to be scaled appro-
priately. More on the Vanishing gradients and Exploding Gradients has been talked
about in the subsequent subsections.
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8.6.2 Existence of fixed point

What is a fixed point? A fixed point is a point which is unchanged when the function
is applied on it. Mathematically, it refers to

f(x0) = x0.

If we can prove that the equation has a fixed point, this property helps in convergence
and can be used in neural networks for classification. For the SBAF based parabola,
as we are not tuning any hyperparameters, we get the following fixed point:

1− x+ x2 = x

1− 2 ∗ x+ x2 = 0

(1− x)2 = 0
x = 1.

Hence x = 1 is a fixed point for the SBAF based parabola.
For the A-ReLU based parabola (k∗x2), we obtain the condition for the existence

of a fixed point (Apart from the trivial case of x = 0) to be

k > 1/t

Proof.
k ∗ x2 = x

x(k ∗ x− 1) = 0
x = 1/k
k = 1/t.

Hence, we obtain the condition for the existence of a fixed point to be k > 1/t. This
means that for the function to have a fixed point, k should be taken such that k is
greater than (1/t), where t is the range of the input being assumed. �

As we assume the range to be within 1(t = 1), we approximate the value of k by
trying to minimize the square error between the standard ReLU activation and our
novel activation in the positive half, i.e.

min
∫ t

0

(k ∗ x2 − x)2dx.

Since k > 1/t implies k > 1 (t = 1 in this case). For our tests, we obtained k = 1.25
and have used this value. SBAF Parabola vs. X graph and 1.25x2 vs. x graph is
shown below (Fig. 18).

Similarly, for a generic parabola of the form

y = a ∗ x2 + b ∗ x

as taken in the previous subsection, the fixed point condition is as follows:

a ∗ x2 + b ∗ x = x

a ∗ x2 + (b− 1) ∗ x = 0

a ∗ x2 = (1− b) ∗ x
a ∗ x = 1− b

x = (1− b)/a.

Therefore, as long as our input range is greater than the above value, i.e. |t| >=
(1− b)/a, a fixed point exists.
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Fig. 18. Non-monotone activation units derived from SBAF and A-ReLU. (a) SBAF
parabola: parabolic activation against input, derived from SBAF. (b) A-ReLU parabola:
parabolic activation derived from A-ReLU with k = 1.25.

Fig. 19. (a) SBAF parabola: parabolic activation derived from SBAF. (b) ReLU parabola:
parabolic activation derived from Approximate ReLU.

8.6.3 Exploding and vanishing gradients

Being an activation function, we cannot ignore the issue of exploding and vanishing
gradient as we talked about before. As seen from the plots below, the probability of
vanishing gradient occurs only at specific points in the function (we are addressing
shallow networks at this point). In terms of exploding gradient, if we are able to limit
the input values to a suitable range, we can control the exploding gradient issue. The
SBAF parabola is more stable towards exploding gradient in the positive half while
the ReLU parabola is more stable in the negative half. Plots for SBAF Parabola vs.
its derivative and x2 vs. its derivative are shown below (Fig. 19).

9 Network architecture

The architecture to explore the proposed activation functions is based on a multilayer
perceptron that internally deploys back-propagation algorithm to train the network.
Neurons are fully connected across all the layers and output of one layer is supplied
as input to neurons of subsequent layer during the forward pass. Alternatively, the
backward pass computes the error gradient and transmits it back into network in
the form of weight-adjustments. Computation of gradients require calculating the
derivatives of activation functions (SBAF and A-ReLU) which have been explained
briefly in Algorithms 2 and 3.

The implementation of these algorithms is done in Python installed on an x64
based AMD E1-6010 processor with 4GB RAM. The github repository4 stores the
Python code for the SBAF and A-ReLU activations. The purpose of this exercise is

4 https://github.com/mathurarchana77/A-RELUandSBAF

https://github.com/mathurarchana77/A-RELUandSBAF
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to demonstrate the performance of the activation functions used on variety of data
sets. The Python implementation of these activation functions is done from scratch
[68]. The whole architecture is implemented as a nested list, where the network is
stored as a single outer list and multiple layers in the network are maintained as inner
lists. A dictionary is used to store connection weights of the neurons, their outputs,
the error gradients and other intermittent results obtained during back propagation
of errors. The computation associated with the processing of neurons in the forward
and backward pass are indicated in the algorithms below. The next sections explore
the details involved in execution of these algorithms on different feature sets and
investigates the performances by comparing them with the state-of-the-art activation
functions.

Algorithm 2: Optimise weights and biases by using back propagation on
SBAF.
1 Initialize all weights wij , biases bi, n epochs, lr, k and α;
2 for Each training tuple I in the database do
3 for each unit j in input layer do
4 Oj ← Ij ;
5 end
6 The forward Pass;
7 for each unit j in the hidden layer do
8 hjnet ←

∑
i wjiOi + bj ;

9 hjout ← 1
1+k(hjnet)α(1−hjnet)(1−α) ;

10 end
11 for each unit j in the output layer do
12 ojnet ←

∑
i wjihiout + bj ;

13 ojout ← 1
1+k(ojnet)α(1−ojnet)(1−α) ;

14 end
15 The Backward pass;
16 for each unit j in the output layer do
17 d← ojout(1−ojout)

ojnet(1−ojnet) (ojnet − α);
18 E ← d.(Tj −Oj);
19 end
20 for each unit j in the hidden layer do
21 d← hjout(1−hjout)

hjnet(1−hjnet) (hjnet − α);
22 E ← d

∑
k EkWkj ;

23 end
24 The weights update;
25 for each weight wji in network do
26 4wji ← lr.Ej .hjout;
27 wji ← wji +4wij ;
28 end
29 The bias update;
30 for each weight bi in network do
31 4bi ← lr.Ej ;
32 bi ← bi +4bi;
33 end
34 end
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Algorithm 3: Optimise weights and biases by using back propagation on A-
ReLU.
1 Initialize all weights wij , biases bi, n epochs, lr, k and n;
2 for Each training tuple I in the database do
3 for each unit j in input layer do
4 Oj ← Ij ;
5 end
6 for each unit j in the hidden layer do
7 hjnet ←

∑
i wjiOi + bj ;

8 hjout ← k.(hjnet)
n ;

9 end
10 for each unit j in the output layer do
11 ojnet ←

∑
i wjihiout + bj ;

12 ojout ← k.(ojnet)
n;

13 end
14 for each unit j in the output layer do

15 d← n.k
1
n .(ojout)

n−1
n ;

16 E ← d.(Tj −Oj);

17 end
18 for each unit j in the hidden layer do

19 d← n.k
1
n .(hjout)

n−1
n ;

20 E ← d
∑

k Ekwkj ;

21 end
22 for each weight wji in network do
23 4wji ← lr.Ej .hjout ;
24 wji ← wji +4wij ;

25 end
26 for each weight bi in network do
27 4bi ← lr.Ej ;
28 bi ← bi +4bi;
29 end

30 end

10 Data

The PHL-EC (University of Puerto Rico’s Planetary Habitability Laboratory’s Exo-
planet Catalog) dataset [10,45] consists of a total of 68 features, 13 categorical and
the remaining 55 are continuous. The catalog uses stellar data from the Hipparcos
catalog [44,69] and lists 3771 confirmed exoplanets, out of which 47 are meso and
psychroplanets and the remaining are non-habitable. The features included in cata-
log are atmospheric type, mass, radius, surface temperature, escape velocity, Earth
Similarity Index, flux, orbital velocity, etc. The difference between The PHL-EC and
other catalogs is that PHL-EC models some attributes when data are not available.
This includes estimating surface temperature from equilibrium temperature as well
as estimating stellar luminosity and pressure. The presence of observed and estimated
attributes presents interesting challenges.

This paper uses the PHL-EC data set, of which an overwhelming majority are
non-habitable samples. Primarily, PHL-EC class of labels of exoplanets are non-
habitable, mesoplanets, and psychroplanets [10]. The class imbalance is observed
in the ratio of thousands to one. Further, the potentially habitable planets (meso
or psychroplanets) have their planetary attributes in a narrow band of values such



2672 The European Physical Journal Special Topics

that the margins between mesoplanets and psychroplanets are incredibly difficult to
discern. This poses another challenge to the classification task.

The classes in the data are briefly described below:

(1) Non-Habitable: planets, mostly too hot or too cold, may be gaseous, with
non-rocky surfaces. Such conditions do not favor habitability.

(2) Mesoplanet: generally referred to as Earth-like planets, the average global sur-
face temperature is usually between 0 ◦C and 50 ◦C. However, Earth-similarity
is no guarantee of habitability.

(3) Psychroplanet: these planets have mean global surface temperature between
−50 ◦C and 0 ◦C. Temperatures of psychroplanets are colder than optimal for
sustenance of terrestrial life, but some psychroplanets are still considered as
potentially habitable candidates.

The data set also has other classes, though insignificant in number of samples for
each class. These are thermoplanets, hypopsychroplanets and hyperthermoplanets.
The tiny number of samples in each class makes it unsuitable for the classification task
and these classes are therefore not considered for class prediction. Certain features
such as the name of the host star and the year of discovery have been removed
from the feature set as well. We filled the missing data by class-wise mean of the
corresponding attribute. This is possible since the amount of missing data is about
1% of all the data. The online data source for the current work is available at the
university website5.

11 Experiments

The PHL-EC dataset has 3771 samples of planetary data for 3 classes of planets and
45 features (after pruning unnecessary features). As already mentioned, a Multi Lay-
ered Perceptron (MLP) is implemented at the core for classifying planets. The MLP
internally utilizes gradient descent to update weights and biases during classification.
The connection weights and biases are randomly initialized. The activation functions
used in MLP are sigmoid, SBAF, A-ReLU and ReLU, and details for implementing
SBAF and A-ReLU along with the computation of gradients in both cases is shared
in Appendix C.2.

As a part of the experiments, different data sets are explicitly built by select-
ing certain combination of features from the original feature set. The idea behind
doing this is to evaluate the performance of functions for a variety of feature sets.
The following subsection illustrates various sets of data used on the activation func-
tions and their results. In all these cases, the training set consists of 80% of samples
and remaining 20% are used for testing. SBAF uses the hyper parameters, α and
k, that are tuned during execution of code and best results were seen at α = 0.5
and k = 0.91 (in agreement with the fixed point plots we observed, k = 1 does not
alter classification performance). Similarly, for A-ReLU, k and n were set to 0.5 and
1.3 respectively (this is from the evidence by the approximation to ReLU-empirical
observations match). This eliminates the need for parameter tuning. Tables 1–3 refer
to the confusion matrix and classification results are shown in Tables 4 and 5. The
accuracy, precision and recall are indicated for all classes of planets: Non habit-
able, Mesoplanet and Psychroplanet. Detailed analysis of these tables is discussed in
Section 11.1. As seen from the tables, A-ReLU has outperformed ReLU in almost
all the cases under investigation and SBAF has performed significantly better than
the parent function, Sigmoid. Section 11.2 captures a comparison of SBAF, A-ReLU
with another activation function, Swish.

5 http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database

http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database
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Table 1. Confusion Matrix obtained while executing SBAF using all 45 features; the three
classes are non habitable, Mesoplanet and Psychroplanet; the confusion matrix shows all
745 non-habitable planets classified correctly; 5 Mesoplanets and 1 Psychroplanet is also
labeled correctly by the network. Please note, all rocky exoplanets have been considered
and therefore the numbers do not match up with the total count reported in introduction.

Predicted
Non-Habitable Mesoplanet Psychroplanet

Actual
Non-habitable 745 0 0
Mesoplanet 0 5 4
Psychroplanet 0 0 1

Table 2. Confusion Matrix obtained while executing A-ReLU using No-Surface temperature
dataset (Case 3), the three classes are non habitable, Mesoplanet and Psychroplanet. Please
note that dataset is used post upsampling.

Predicted
Non-Habitable Mesoplanet Psychroplanet

Actual
Non-habitable 333 0 0
Mesoplanet 0 32 0
Psychroplanet 0 0 74

Table 3. Confusion Matrix for A-ReLU using all feature dataset (Case 1), we observe that 1
non-habitable planet is misclassified as psychroplanet, and rest of the prediction are correct.
Please note that the dataset is used post upsampling.

Predicted
Non-Habitable Mesoplanet Psychroplanet

Actual
Non-habitable 343 0 1
Mesoplanet 0 38 0
Psychroplanet 0 0 76

11.1 Chosen feature sets

The different combination of features employed on the traditional and proposed acti-
vation functions is explored here. A case-by-case exploration of these feature sets
with their performance comparison, is indicated in Tables 4 and 5. The first col-
umn of these tables reveals features, marked with their count and the case number.
Remaining columns reflect class-wise accuracy, precision and recall of the 4 activation
functions.

(1) To begin with, all features are used as input to the neural network, thus leading
to 45 input and 3 output neurons. Since the inherent characteristics of each
activation function are different, each one uses a different number of neurons in
the hidden layer to reach convergence. For sigmoid, 20 hidden neurons are used
while SBAF, A-ReLU and ReLU used 11 neurons in the hidden layer. Sigmoid
gives the best accuracy at learning rate of 0.015, momentum of 0.001 and at 500
epochs, while SBAF, A-ReLU and ReLU gives the best results at 100 epochs
keeping the other parameters same.
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(2) A subset of features (restricted features) consisting of Planet Minimum Mass,
Mass, Radius, SFlux Minimum, SFlux Mean, SFlux Maximum are used as input.
All networks used 4 neurons in hidden layer to stabilize. Sigmoid converged at
learning rate of 0.1 and momentum of 0.01. In parallel, SBAF A-ReLU and ReLU
converged at learning rate of 0.08, momentum at 0.004 and number of epochs
as 300. The performance of all the classifiers is reported in Table 4. It is evident
from the table that the network is able to classify even the minority class samples
(Mesoplanets and Psychroplanets) with fairly decent accuracy.

(3) It has already being shown that Surface Temperatures (ST) can distinguish hab-
itable planets from non-habitable ones with a large degree of precision. Therefore,
it becomes essential to ascertain if the proposed activation functions (SBAF and
A-ReLU) as well as the already established ones (sigmoid and ReLU), can per-
form classification when ST is removed from feature set. To achieve this, the
next set of features are those from which ST is removed. Thus, exoplanet fea-
tures used as input are Zone Class, Mass Class, Composition Class, Atmosphere
Class, Min Mass, Mass, Radius, Density, Gravity, Esc Vel, SFlux Min, SFlux
Mean, SFlux Max, Teq Min (K) , Teq Mean (K), Teq Max (K), Surf Press, Mag,
Appar Size, Period, Sem Major Axis, Eccentricity, Mean Distance, Inclination,
Omega, HZD, HZC, HZA, HZI, ESI and Habitable. The features of parent Star
that belong to feature set are Mass, Radius, Teff, Luminosity, Age, Appar Mag,
Mag from Planet, Size from Planet, Hab Zone Min and Hab Zone Max. For
SBAF and A-ReLU, the 44 featured data set is tuned at learning rate = 0.01,
momentum = 0.001 and epochs = 300. The number of units in the hidden layer
is 12 for all four activation functions. It is interesting to inspect that A-ReLU
performs 100% classification for all three classes and this is at par with A-ReLU.
However, sigmoid performs marginally better than SBAF.

(4) A unique combination of planetary attributes like Minimum Mass, Mass, Radius
and Composition class is taken as input. The essence of selecting these features
is to know whether the activation functions can perform classification by solely
using Mass and mass related features. It becomes a challenging machine learning
problem since the discrimination of planets is not at all clear by features such
as mass of planets. Interestingly, for this kind of problem, A-ReLU performs
better than the parent function ReLU, and SBAF outpaces Sigmoid with sub-
stantial difference in accuracy. The networks are tuned at learning rate of 0.2
and momentum of 0.03 at 400 epochs. It uses 3 neurons in the hidden layer.

(5) The following 4 cases (Cases 5–8) are set for an exclusive exploration, where
exoplanets are classified using one feature from planets at a time along with
multiple features of the parent star. At first, the planet’s radius along with 6 star
features (Mass, Radius, Teff, Luminosity, Hab Zone Min and Hab Zone Max) are
fed as input to the four activation functions. With 4 neurons in the hidden layer,
the learning rate and momentum for the network are tuned to 0.09 and 0.001.
Results are achieved at 300 epochs, as shown in Table 5. The performance of
A-ReLU is exceedingly better than the rest of the activation functions.

(6) Continuing on the same line of work, another feature set bearing planet’s mass
and previously used 6 star features are fed to the network. Hidden neurons are
same in number as in the previous case. Here too, A-ReLU has performed better
from its parent activation function, ReLU as well as from the other functions in
terms of classification accuracy, precision and recall.

(7) Table 5 shows the performance of classification using Minimum mass as planet’s
feature and remaining parent star features as input keeping other arrangements
same as the previous cases. Comparing accuracy in each activation function,
A-ReLU has again performed better for all the 3 classes of planets.
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(8) A slightly different grouping of feature is attempted here. Two planet features,
mass and minimum distance computed from parent star, and the remaining 6
star features are used as input. For this particular combination of features, A-
ReLU and ReLU performs at par and sigmoid performs better classification in
comparison with the rest. This is the only case where an irregularity is seen in
the performance.

The performance metrics shown in Tables 4 and 5 indicate that SBAF and A-
ReLU outshine sigmoid and ReLU in almost all of the cases. Some more critical
parameters in terms of training time, CPU utilization and memory requirements, for
the execution of activation functions are reported in Table 6. SBAF and A-ReLU take
the shortest time to reach convergence even though number of epochs are kept same.
CPU utilization is minimum for A-ReLU followed by ReLU, SBAF and sigmoid.
Memory consumption is balanced and almost equal for all the functions under study.
It is worth mentioning that values reported in the table are obtained after taking the
average of all 8 executions from above cases.

An investigation of the confusion matrix resulting from the execution of SBAF,
is disclosed in Table 1. It is noted that, even though there are considerably large
number of samples of non-habitable planets, SBAF classifies non-habitable and Psy-
chroplanet unmistakably, with the accuracy of 1 and 0.994 for the respective classes.
However, Mesoplanets are not flawlessly classified, (out of 9 samples, 5 were correctly
labeled and rest of the 4 were mistakenly labeled as Psychroplanet), the reason is
attributed to the class distribution in the data set. The number of samples of non-
habitable, Mesoplanet and Psychroplanet are 3724, 17 and 30 respectively. Evidently,
Mesoplanet are lowest in training samples and this leads to insufficiency in training
the network for this class. Nevertheless, this can be handled by balancing the class
samples in the training data (Tab. 7).

Even though our focus is not all on the performance of statistical machine learn-
ing or other learning algorithms on the PHL-EC data, we feel its necessary to report
the performance of some of those briefly. This was a post-facto analysis (the real-
ization dawned upon us much later) done to ascertain the efficacy of our methods
compared to methods such as Gaussian Naive Bayes (GNB), Linear Discriminant
Analysis (LDA), SVM, RBF-SVM, KNN, DT, RF and GBDT [17]. These methods
did not precede the exploration into activation functions. We believe the readers
should know and appreciate the complexity of the data and classification task at
hand, in particular when hard markers (surface temperature and surface tempera-
ture related features which discriminate the habitability classes quite well). This also
highlights the remarkable contribution of the proposed activation functions toward
performance metrics. It is for this reason, we do not tabulate the results in detail
but just state that for the specific cases (Cases 2, 4–8, “six” out of the total “eight”
cases considered for our experiments) where “hard marker” features were removed,
none of the popular machine learning methods mentioned above reached over 75%
accuracy class-wise and 68% overall. This augurs well for the strength of our analysis
presented in the manuscript. (Please refer different learning curves and MSE plots
for various activation functions Figs. 20 and 21). Figure 20 indicates Sogmoid attains
saturation at a small epoch value and this can be interpreted as the representational
power of the activation function (since identical network architecture was used). If
the activation function is more expressive, it will, in general, get a lower MSE when
trained sufficiently long enough. Therefore, its not surprising that SBAF has the low-
est MSE (and thus the highest representational power), since its shape can easily be
changed. A-ReLU should not be very surprising either since the parameters render
A-ReLU flexibility. Even though SBAF and A-ReLU has more parameters compared
to sigmoid, their faster convergence is striking.
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Fig. 20. MSE plots for all Activation functions executed for 500 epochs on Restricted
features of PHL-EC data: sigmoid attains saturation at an early MSE value and fails to
learn effectively when compared with SBAF, A-ReLU and ReLU.

11.2 A note on Swish activation

Swish activation function [70] is derived from ReLU with the intention of smoothing
the discontinuity and singularity of ReLU. The function is known to work well, in
practice, when deployed on deep neural nets. A-ReLU is also designed to overcome
similar problems in ReLU. The difference however lies in theoretical validation of
A-ReLU in approximating over-parametrized RelU networks. Swish presents empir-
ical evidence alone. We presented theoretical justification of A-ReLU, to the extent
of parameter selection, degree of approximation and other functional properties that
will ensure it works well, even in shallow networks constrained by restricted fea-
tures. As we observe, this is indeed the case. Please note, throughout the manuscript,
we endeavored to justify cheap learning paradigm, supported by theoretical results.
A-ReLu fits in the landscape as observed and Swish does not, apparently. Nonethe-
less, it is relevant to compare the two since both attempts to address the same issues
in ReLU activation.

It is quite possible, over deep networks, Swish is able to generalize and extract
features required to perform well. It does indeed [70]. However, as we observed, the
expressive and generalization power of Swish activation is limited in shallow networks
with constrained features. This impression might alter if theoretical investigations,
beyond the scope of the current manuscript, are carried out in future. For example,
in Cases 4–8 (constrained feature sets), accuracy/precision/recall scores of Swish
activation on one of the two minority classes, Meso and Psychro are 0! (Tab. 8).
The comparison also shows that Swish performs at par with SBAF and A-ReLU
when dataset includes all 45 features. For case 3, when feature set is large, A-ReLU
manages to get 100% accuracy, whereas SBAF and Swish showed satisfactory results
in classifying Non-H, Meso and Psychro planets. Swish almost failed to classify Meso
and Psychro planets in all the other cases (Cases 2, 4–8), even though SBAF and
A-ReLU showed fair classification particularly for these planets. To derive the essence
of this exercise, Swish performs at par when feature set is sufficiently large (Cases 1
and 3), but fails to identify Meso and Psychro when size of feature set shrinks and
this is not the case with SBAF and A-ReLU. Figure 21 shows the validation curves
and learning curve for SBAF shows a good fit for the data sets used. Neural network
with A-ReLU shows a generalization gap between the training and validation loss
curves which implies a specific case where in validation dataset is easier to predict
than training data. However, when plotted with all features, a good fit is seen. Swish
function creates over-fitted learning curves for the two datasets (Mass, radius data
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Fig. 21. Training error vs. validation error for SBAF, A-ReLU and Swish is shown using
different data sets.

and restricted features data). Nonetheless, the training and validation loss decreases
to a point of stability in all the plots shown here.

F1 Score: The F1 score is the harmonic mean of the recall and precision. It is a
neat way to describe performance of classifiers, particularly in cases where data are
imbalanced. For the purpose of experimentation, we computed F1 scores for Swish,
SBAF and A-ReLU activation functions. Using case numbers from Table 8, for Cases
2, 4, 7 and 8, Swish reported an F1 score of zero for mesoplanets and simultaneously,
a zero was observed for psychroplanets for Cases 5–7. In the remaining cases, the
score of Swish is at par with SBAF but interestingly, A-ReLU gives highest F1 scores
in all cases, as against SBAF and Swish.
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Table 8. Comparative analysis of SWISH activation function with SBAF and A-ReLU is
presented in this table.

Different feature sets

Comparison of activation functions with Swish

Performance
SWISH SBAF Approx. Relu

Non-H Meso Psychro Non-H Meso Psychro Non-H Meso Psychro
Accuracy 1. 0.95 0.95 1.0 0.99 0.994 0.997 1. 0.997

All features (45) Precision 1.0 0.86 0.80 1.0 1.0 0.2 1. 1. 0.997
(Case 1) Recall 1.0 0.52 0.96 1.0 0.55 1.0 0.997 1.0 1.0

Restricted Accuracy 0.98 0.83 0.82 0.987 0.854 0.847 1.0 1.0 1.0
Features (6) Precision 1.0 0.0 0.59 1. 0.681 0.643 1.0 1.0 1.0

(Case 2) Recall 0.97 0.0 1 0.978 0.223 0.943 1.0 1.0 1.0
Without Surface Accuracy 1 0.97 0.97 0.997 0.924 0.927 1.0 1.0 1.0
Temperature (44) Precision 1 0.74 1. 1. 0.484 0.783 1.0 1.0 1.0

(Case 3) Recall 1. 1. 0.85 0.996 0.5 0.783 1.0 1.0 1.0
Planet MinMass Accuracy 0.97 0.93 0.90 0.922 0.922 0.864 0.971 0.946 0.931

Mass and Precision 1.0 0.0 0.55 1. 0.3 0.456 1. 0.619 0.673
Radius (4) (Case 4) Recall 0.96 0.0 1.0 0.904 0.130 0.912 0.965 0.590 0.846

Radius Accuracy 0.792 0.751 0.791 0.721 0.738 0.754 0.908 0.8311 0.807
and other Precision 0.709 0.621 0.0 0.617 0.669 0.152 0.919 0.718 0.548

Star features (7) (Case 5) Recall 0.896 0.786 0.0 0.962 0.738 0.37 0.867 0.852 0.441
Planet Mass Accuracy 0.803 0.889 0.902 0.859 0.868 0.881 0.997 1. 0.997

and other Precision 0.801 0.588 0.0 0.914 0.442 0.307 1. 1. 0.987
Star features(7) (Case 6) Recall 0.997 0.095 0.0 0.906 0.628 0.177 0.997 1. 1.

Minimum Accuracy 0.740 0.893 0.846 0.850 0.8007 0.857 0.925 0.850 0.868
Mass and other Precision 0.740 0.0 0.0 1.0 0.190 0.520 0.938 0.269 0.571

Star features(7) (Case 7) Recall 1.0 0.0 0.0 0.798 0.2666 0.8837 0.961 0.233 0.558
Minimum Mass Accuracy 0.694 0.796 0.811 0.858 0.77 0.716 0.904 0.799 0.839
P. Distance and Precision 0.666 0.0 0.527 0.911 0.35 0.38 0.894 0.506 0.666

Star features(8) (Case 8) Recall 0.984 0.0 0.301 0.846 0.106 0.746 0.958 0.636 0.349

12 Another piece in the puzzle: Unsupervised learning to group
exoplanets

A significant portion of our discussion on habitability revolved around machine clas-
sification for exoplanets, and for good reason. As pointed out earlier, classification of
objects is equivalent to predicting class labels based on existing (training) class labels.
Thus, the efficacy of such algorithms/methods depends on quality of training data.
Classification methods fall under supervised learning. We ask the following question:
what do we anticipate if the grouping of exoplanets is accomplished by unsupervised
learning methods, i.e. clustering? How do we frame the problem so that the solution
helps us in finding the right habitable candidates without their trained class labels?
Clustering deals with a class of problems where we are not given the target labels
with the data. Essentially, we only have the data vector, X as our training examples.
The only thing we can really do is find some patterns in the data. Cluster analysis,
or clustering, is one such class of methods. In clustering, we try to find reasonable
“clusters” of data–data that is grouped together in some meaningful way. What con-
stitutes “meaningful” decides what clustering algorithm we use. If we decide to follow
this path of unsupervised learning, what are the features/attributes we use to arrive
at the clusters we wish to obtain? We attempt to answer these questions here.

We present the following hypothesis: Number of potentially habitable planets
(tagged as mesoplanets or psychroplanets) in PHL-EC are far less compared to the
number of non-habitable planets. Therefore, finding and organizing these mesoplanets
or psychroplanets to a group/cluster amounts to determining anomalies in the data
set, since the fraction of these planets in comparison to non-habitable ones is signif-
icantly lesser. We will use the same feature set previously employed in classification
except for the fact that we will do away with the labels-mesoplanets, psychroplan-
ets and non-habitable planets as the clustering/anomaly detection method will not
possess the knowledge of class labels during detection. This is the hallmark of unsu-
pervised learning methods. In anomaly detection based clustering, it is assumed that
the anomaly will be part of a sparse or small cluster, and normal data instances belong
to the large or dense cluster. Such a technique depends on a cluster-based anomaly
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Table 9. Hausdorff distances of different attributes.

Features Hausdorff distance
Period 0.3221775035782434
Surface temperature 0.09311046300418734
Escape velocity 0.06300384960911469
Gravity 0.02891863077548809
Eccentricity 0.021038884550142307
Surface pressure 0.016395465088041485
Density 0.01466598293926538
Radius 0.01396646644180649
Mass 0.008171181718606813
Flux 0.007764217430292616

score assigned to each data instance. Based on this score, anomaly data are detected.
The score is computed as a distance between the data point and the centroid of the
cluster. The method relies heavily on the knowledge of the number of clusters in the
data-set. This specific clustering technique can be compared with other clustering
techniques where planets are clustered based on similarities/dissimilarities.

12.1 Attribute selection

An important challenge in the dataset is that a total of about 1% of data is missing
and in order to overcome this, we performed imputation with R using MICE package.
The MICE package in R helps you impute missing values with plausible data values.
These plausible values are drawn from a distribution specifically designed for each
missing data point. Following this, a clustering technique can be used on the processed
data set. The selection of appropriate attributes is very crucial for any analysis. We
plot the distribution of attributes of habitable and non-habitable exoplanets and try
to find a pattern in their distribution. We have made use of Hausdorff distance metric
to find the distance between the distribution of attributes of habitable and non-
habitable planets. Hausdorff distance between two distribution A and B is defined
as following,

dH(A,B) = max
∀a∈A

min
∀b∈B

|a− b|. (23)

For every point a in A, we find the distance of the nearest point in B, store this in
a set, and then find the maximum of all these distances (Tab. 6).

Data points in the same cluster should have similar properties, while the data
points in different clusters should have dissimilar properties. Clustering helps us find
the relationship between the data points by observing what clusters they fall into.
We have made use of various clustering methodologies such as spectral clustering,
anomaly detection and PSO (Particle Swarm Optimization) based clustering (Tab. 9).

12.2 Spectral clustering

Spectral clustering is used to identify communities of nodes in a graph based on the
edges connecting them. Spectral clustering uses information from the eigenvalues of
special matrices built from the graph or the data set. In order to get the eigenvalues,
we need to build an adjacency matrix of the graph and convert the matrix to Degree
matrix. Subsequently, we construct the Laplacian graph (L is the Degree matrix-
Adjacency matrix). This matrix is normalized for mathematical efficiency. To reduce



Evolution of Novel Activation Functions... 2683

Table 10. Habitable Planets in Earth’s Cluster for spectral clustering.

Planet names
GJ 667 C e
HD 40307 g
HD 283869 b
Kapteyn b
Kepler-62 e
Kepler-62 f
Kepler-283 c
Kepler-296 f
Kepler-440 b
Kepler-442 b
Kepler-452 b
Kepler-1229 b
Kepler-1410 b
Kepler-1544 b
KOI-4427 b
tau Cet e

the dimensions first, the eigenvalues and the respective eigenvectors are calculated.
If the number of clusters is k, then the first eigenvalues and their eigenvectors are
stacked into a matrix such that the eigenvectors form columns of the matrix. Cluster-
ing is performed on this reduced data. The number of zero eigenvalues corresponds
to the number of connected components in our graph. We obtained the following
habitable planets in our earth’s cluster, based on this method (Tab. 10).

12.3 Clustering via anomaly detection

We have made use of Isolation forest [71] method for anomaly detection [72,73].
This method is fundamentally different and efficient means of outlier detection from
the commonly used basic distance and density measures. It isolates observations by
randomly selecting a feature and then randomly selecting a split value between the
maximum and minimum values of the selected feature. A normal point will be more
densely clustered while an anomalous point will be far away from the densely dis-
tributed points. Thus, while randomly partitioning the domain space, the anomalous
points will be detected in lesser number of partitions than a normal point. Smaller
number of partitions means distance from the root node is smaller. An anomaly score
is required for any anomaly detection method. The anomaly score for an instance x
is given by:

s(x, n) = 2−(h(x)/c(n)) (24)

where E(h(x)) is the average of the path lengths from the Isolation forest and c(n)
is given by,

c(n) = 2H(n− 1)− (2(n− 1)/n). (25)

The anomaly score lies between 0 and 1. For our analysis, it produces a total of
66 anomalies, out of which 18 are classified as habitable by the PHL-EC dataset.
Following are the 18 planets (Tab. 11).
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Table 11. Anomaly Score of Habitable Planets.

Planet name Anomaly score
HD 40307 g 0.6618491281
HD 283869 b 0.5876162072
Kepler-22 b 0.6979305999
Kepler-62 e 0.6085267624
Kepler-62 f 0.6939491374
Kepler-174 d 0.6932244356
Kepler-298 d 0.5842785633
Kepler-440 b 0.5830443768
Kepler-442 b 0.6263227795
Kepler-443 b 0.646733081
Kepler-452 b 0.7317805784
Kepler-1090 b 0.6754203354
Kepler-1540 b 0.6644749057
Kepler-1544 b 0.6564644722
Kepler-1552 b 0.6654079436
Kepler-1638 b 0.6839070943
tau Cet e 0.6337382861
earth 0.7680744097

12.4 Particle swarm optimization

Particle swarm optimization (PSO) is a biologically inspired metaheuristic for finding
the global minima of a function. The population of particles keeps track of its current
position and the best solution it has encountered, called pbest. Each particle also
has an associated velocity that traverses the search space. The swarm keeps track of
overall best solution, called gbest. Each iteration of swarm updates the velocity of the
particle towards its pbest and gbest values. The minimization function is quantization
error which is a metric of error introduced by moving each point from its original
position to its associated quantum point. In clustering, we often measure this error
as the root-mean-square error of each point(moved to the centroid of its cluster).

When a particle finds a location that is better than the previous locations, it
updates this location as the new current best for the particle i. It is no longer required
to update current best solutions when the objective no longer improves or after a
certain number of iterations. Here xi and vi are position vector and velocity vector
respectively. The new velocity is found by the following formula:

vi ← w.vi + λgug(gbest− pi) + λpup(pbesti − pi) (26)
pi ← pi + vi. (27)

12.5 PSO based clustering

Here f(x) is a function to be minimized which is also called as the fitness function,
where x is an n-dimensional array. Algorithm 4 outlines the approach to minimizing
f(x) using PSO and Algorithm 5 assigns cluster labels. A set of particles are randomly
initialized with position and velocity. The position of the particle corresponds to its
associated solution. Here each particle has cluster centroids which is the solution and
pbest score calculated using the fitness function. The pbest position that corresponds
to the minimum fitness is selected to be the gbest position of the swarm.
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On each iteration, the algorithm updates the velocity and position of each particle.
For each particle, it picks two random numbers ug, up from a uniform distribution,
U(0, 1) and updates the particle velocity. Here, w is the inertial weight and λg, λp are
the global and particle learning rates. If the new position of the particle corresponds
to a better fit than its pbest, the algorithm updates pbest to the new position. Once
the algorithm has updated all particles, it updates gbest to the new overall best
position. The function g() assigns cluster labels to each data point and returns an
array of cluster labels.

We provide n-dimensional array of data and gbest centroids as parameter to
function g(). Then we calculate the distance between data points and the centroids
and store it in the distance array. Distance array corresponding to each centroid
is stored in the global distance array. The data point is assigned to a cluster with
minimum distance.

Algorithm 4: Algorithm for GA-PSO.
input : An n-dimensional array of data x
output: An array of cluster labels

1 for j ← 1 to max iterations do
2 for each particle i← 1 to n particles do
3 up, ug ≈ U(0, 1)
4 vi ← w.vi + λgug(gbest− pi) + λpup(pbesti − pi)
5 pi ← pi + vi

6 if f(pi)< f(pbesti) then
7 pbesti ← pi

8 end

9 end
10 Sort the particles based on fitness value
11 Crossover the top 25 percent particles
12 Mutation(particles)
13 for each particle i← 1 to n particles do
14 if f(pbesti) < f(gbest) then
15 gbest← pbesti

16 end

17 end

18 end
19 cluster ← g(x, gbest)
20 return cluster

Cluster 4 (Fig. 22) is marked as the earth’s cluster as seen in the above graph.
There are 298 planets in the earth’s cluster out of which 12 are mesoplanets (sur-
face temperature 0–50 degree Celsius) and psychroplanets (surface temperature in
the range of −50−0 degree Celsius). This brings us to an interesting proposition.
Assuming the clustering/anomaly detection method yields reasonably good results
(depends on anomaly score or purity of clusters), can we use these results to cross-
validate earlier conclusions drawn from supervised methods described in Sections
4–9? If indeed, we can, then we have a robust list of potentially habitable exoplanets
curated from two completely orthogonal approaches- one that does rely on train-
ing data and the other which does not! This could have far reaching connotations
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Algorithm 5: Algorithm for clustering.
input : An n-dimensional array of data x and gbest centroids
output: An array of cluster labels

1 for each gbest centroids c do
2 for each data x do
3 for each param i← 1 to n params do
4 d← d+ (xi − ci)2

5 end
6 distance.append(d)

7 end
8 global distance.append(distance)

9 end
10 global distance← transpose(global distance)
11 cluster ← argmin(global distance)
12 return cluster

Fig. 22. Planet’s escape velocity vs. period.

pending more detailed investigation in to clustering techniques applied on exoplanets
(Tab. 12).

13 Discussion and conclusion

As we come to terms with the constantly increasing number of discovered exoplan-
ets and the possibility that stars with planets are a rule rather than an excep-
tion, characterizing exoplanets in terms of planetary parameters, types and popu-
lations is a reasonably feasible task to accomplish. Once classified with near-perfect
accuracy (which we have shown through our methods) we could then associate
the classified and potentially habitable planets with indices quantifying habitability
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Table 12. Habitable Planets in Earth’s Cluster for PSO based clustering.

Planet names
GJ 273 b
GJ 667 C e
GJ 667 C f
GJ 3323 b
K2-72 e
Kepler-62 f
Kepler-438 b
Kepler-442 b
Kepler-1229 b
Kepler-1652 b
Proxima Cen b
Ross 128 b

potential. This is also important in understanding the formation pathways of exoplan-
ets. However, complete appraisal of the potential habitability needs the knowledge of
multiple planetary parameters which, in turn, requires hours of expensive telescope
time. Automated classification of exoplanets, thus, becomes critical as it helps pri-
oritising the planets to look at and eventually help build a quick screening tool for
evaluating habitability perspectives from observed properties. The automated pro-
cess is not intended to substitute the painstaking process of science that demands
observation and analysis time. But, the classification methods developed are a much
needed follow-up to look for the biosignatures and complement the spectroscopic
studies. These biosignatures are atmospheric gases that only living organisms pro-
duce in abundance. It can be oxygen, ozone, methane, carbon dioxide or, better, their
combinations [3,4]. Plenty of upcoming space missions, PLATO, Euclid and JWST
dedicated to the search of life in the Universe are planned. In order to facilitate the
search in a less expensive manner, we need to make a list of potential/preferred candi-
dates obtained by the methods of exoplanet classification detailed in the manuscript.
This ensures the quest to complete within finite time. It is estimated that one in
five solar-type stars and approximately half of all M -dwarf stars may host an Earth-
like planet in the habitable zone (HZ). As Borucki et al. [5], Batalha et al. [6], and
Petigura et al. [7] pointed out, evidence from Kepler’s data shows that there could be
as many as 40 billion such planets in our Galaxy alone. However, the sheer volume of
task that demands parsing through information containing pentabytes of data may
be a luxury we should try to avoid. Obtaining the spectra of a small planet around
a small star is difficult, and even a large-scale expensive space mission (such as e.g.
JWST) may be able to observe only about a hundred stars over its lifetime [74].
Thus, the task of shortlisting a reasonable list of potentially habitable exoplanets is
of paramount importance. The grand ideas of classifying exoplanets, computing hab-
itability scores/indices and automatic grouping of the exoplanets need to converge
at some level. The different components are significant to investigate without having
one to supersede the other. This brings us to the importance behind development of
activation functions (SBAF family) as a key tool in classification.

The motivation of SBAF is derived from the idea of using kxα(1−x)1−α to max-
imize the width of the two separating hyperplanes (similar to separating hyperplanes
in the SVM as the kernel has a global optima) when 0 ≤ α ≤ 1. This is equiva-
lent to the CDHS formulation when CD-HPF is written as y = kxα(1 − x)β where
α + β = 1, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, k is suitably assumed to be 1 (CRS condition),
and the representation ensures global maxima (maximum width of the separating
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hyperplanes) under such constraints [12,25]. The new activation function to be used
for training a neural network for habitability classification boasts of an optima. Evi-
dently, from the graphical simulations presented earlier, we observe less flattening of
the function and therefore the formulation is able to tackle local oscillations more
easily as compared to the more generally used sigmoid function. Moreover, since
0 ≤ α ≤ 1, 0 ≤ x ≤ 1, 0 ≤ 1− x ≤ 1, the variable term in the denominator of SBAF,
kxα(1 − x)1−α may be approximated to a first order polynomial. This may help us
in circumventing expensive floating point operations without compromising the pre-
cision. We have seen evidence of these claims, theoretically and from implementation
point of view, in the preceeding sections.

Habitability classification is a complex task. Even though the literature is replete
with rich and sophisticated methods using both supervised [75] and unsupervised
learning methods, the soft margin between classes, namely psychroplanet and meso-
planet makes the task of discrimination incredibly difficult. A sequence of recent
explorations by Saha et al. [25] expanding previous work by Bora et al. [12] on
using Machine Learning algorithm to construct and test planetary habitability func-
tions with exoplanet data raises important questions. The 2018 paper [25] analyzed
the elasticity of the Cobb–Douglas Habitability Score (CDHS) and compared its
performance with other machine learning algorithms. They demonstrated the robust-
ness of their methods to identify potentially habitable planets [76] from exoplanet
data set. Given our little knowledge on exoplanets and habitability, these results
and methods provide one important step toward automatically identifying objects of
interest from large data sets by future ground and space observatories. The variable
term in SBAF, kxα(1 − x)1−α is inspired from a history of modeling such terms as
production functions and exploiting optimization principles in production economics
[61,77–79]. Complexities/bias in data may often necessitate devising classification
methods to mitigate class imbalance, Mohanchandra et al. [80] to improve upon
the original method, Vapnik and Chervonenkis [81], Corinna and Vladimir [82] or
manipulate confidence intervals [83]. However, these improvisations led the authors
to believe that, a general framework to train in forward and backward pass may
turn out to be efficient. This is the primary reason to design a neural network with
a novel activation function. We used the architecture to discriminate exoplanetary
habitability [9,10,44,45,84,85].

We had to consider the ramifications of the classification technique in astronomy.
Hence, we try to classify exoplanets based on one feature of the exoplanet at a time
along with multiple features of the parent star. Note, we did not consider surface
temperature, which is hard marker. An example of this is as follows:

1. Attributes of a sample planet:
– Radius only
with attributes of the Parent Star such as Mass, Radius, Effective temperature,
Luminosity, Inner edge of star’s habitable zone and Outer edge of star’s habitable
zone with

2. Class attributes:
– Thermal habitability classification label of the planet.

Similarly, we present results of classification when we include the exoplanet’s mass,
instead of the radius; and when we include the exoplanet’s minimum mass instead
of the radius. Reiterating, we use only one planetary [86] attribute in a classification
run.

Machine classification on habitability is a very recent area. Therefore, the moti-
vation for contemplating such a task is beyond doubt. However, instead of using
“black-box” methods for classification, we embarked upon understanding activation
functions and their role in Artificial Neural Net based classification. Theoretically,
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there is evidence of optima and therefore absence of local oscillations. This is signif-
icant and helps classification efficacy, for certain. In comparison to gradient boosted
classification of exoplanets [17,25], our method achieved more accuracy, a near perfect
classification. This is encouraging for future explorations into this activation function,
including studying the applicability of Q-deformation and maximum entropy princi-
ples. Even without habitability classification or absence of any motivation, further
study of the activation function seems promising.

Our focus has shifted from presenting and compiling the accuracy of various
machine learning and data balancing methods to developing a system for classifica-
tion that has practical applications and could be used in the real world. The accuracy
scores that we have been able to accomplish show that with a reasonably high accu-
racy, the classification of the exoplanets is being done correctly. The performance
of the proposed activation functions on pruned features is simply remarkable for
two reasons. The first being, the pruned feature set does not contain features which
account for hard markers. This makes the job hard since one would expect a rapid
degradation in performance when the hard markers such as surface temperature and
all its related features are removed from the feature set before classification [50]. We
note, when an exoplanet is discovered, surface temperature is one of the features
Astrophysicists use to label it. If surface temperature cannot be measured, it is esti-
mated. Even if the surface temperature cannot be measured, our activation functions
make strong enough classifiers to predict labels of exoplanet samples, dispensing away
the need for estimating it. This implies that whenever an exoplanet is newly discov-
ered, their thermal habitability classes can be estimated using our approach. This
significant information could be useful for other missions based on methods that
would try following up the initial observation. Hence, samples that are interesting
from a habitability point of view could gain some traction quite early.

Habitability indices need to reconcile with the machine learning methods that
have been used to automatically classify exoplanets. Such cross-matching may dis-
pel doubts about relying too much on one number (ESI/CDHS/PHI type) and help
make our estimation efforts more robust. The purpose of machine classification of
exoplanets is to rationalize the indexing to some extent and investigate if there are
conflicting results. It is not easy to discover meeting ground of two fundamentally
different approaches (one of which is CDHS based indexing of exoplanets) that lead
to a similar conclusion about an exoplanet. While habitability indices provides a
numerical indicator, machine classification bolsters the proposition by telling us auto-
matically which class of habitability an exoplanet belongs to. Bora et al. explain that
a CDHS close to 1 indicates a greater chance of habitability. The performance of
machine classification is evaluated by class-wise accuracy. The accuracies achieved
are remarkably high, and at the same time, it is observed that the values of the
CDHS for the sample of potentially habitable exoplanets which are considered are
also close to 1. Therefore, the computational approaches map Earth similarity to
classification based indicator of habitability. Imagine, an intersection of these results
with the findings from an unsupervised grouping of exoplanets (Sect. 12), without
relying on class labels from the catalog! This is remarkably non-trivial.

Future work could focus on using adaptive learning rates [87] by fixing Lipschitz
loss functions. This may help us investigate if faster convergence is achieved helping
us fulfill the larger goal of parsimonious computing.
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Appendix A: What is classification?

Classification is segregation of incoming data into 2 or more groups. The majority
of this discussion will proceed only about binary classification – when there are only
two classes. It is easy to adapt a binary classification algorithm to multiple classes.

Let y be the output variable; in binary classification, y ∈ {0, 1}. For classification,
we set our hypothesis function to

h(x) = g
(
ΘTx

)
where g is some function. A very popular choice for this function is the sigmoid
function, which is also called the logistic function. The logistic function is defined as:

g(z) =
1

1 + e−z
·

The logistic function is bounded between 0 and 1. This makes it very convenient
to use it for classification, because if the output of our hypothesis function is above
0.5, we predict 1; otherwise, we predict 0.

We start with an initial guess for Θ, and tweak it so that the cost function J(Θ)
is minimum.

A.1 Cost function and gradient descent

Our hypothesis function h(x) is non-linear, so the least-squares cost function becomes
non-convex. Instead, we derive the maximum likelihood estimates.

We have,
P (y = 1|x) = h(x)

and thus,
P (y = 0|x) = 1− h(x).

Given this, we can combine the above to obtain:

P (y|x) = h(x)y (1− h(x))1−y
.

The likelihood function is then given by,
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L(Θ) = P (y|x; Θ) =
∏
i

P
(
y(i)|x(i); Θ

)
.

We instead look at the log-likelihood function:

l(Θ) =
m∑
i=1

y(i) log
(
h
(
x(i)
))

+
(

1− y(i)
)

log
(

1− h
(
x(i)
))

.

The principle of maximum likelihood then states that we should choose Θ so that
the likelihood (or in our case, the log-likelihood) is the maximum. This leads to our
cost function:

J(Θ) =
−1
m

m∑
i=1

y(i) log
(
h
(
x(i)
))

+
(

1− y(i)
)

log
(

1− h
(
x(i)
))

.

This function is now convex, and can be optimized using gradient descent. To
find the derivative, we first find the derivative of the sigmoid function.

d

dz

(
1

1 + e−z

)
=
− (−e−z)
(1 + e−z)2

=
e−z

(1 + e−z)2

=
1

1 + e−z
· e−z

1 + e−z

= g(z)
(

1− 1
1 + e−z

)
= g(z) (1− g(z)) .

Then,

∂

∂θj
J(Θ) =

∂

∂θj

(
−1
m

m∑
i=1

y(i) log
(
h
(
x(i)
))

+
(

1− y(i)
)

log
(

1− h
(
x(i)
)))

=
−1
m

m∑
i=1

(
y(i)

h
(
x(i)
)h′ (x(i)

)
+

1− y(i)

1− h
(
x(i)
) (−h′

(
x(i)
)

)

)

=
−1
m

m∑
i=1

(
y(i)

h
(
x(i)
)h(x(i)

)(
1− h

(
x(i)
))(

x
(i)
j

)
− 1− y(i)

1− h
(
x(i)
)h(x(i)

)(
1− h

(
x(i)
))(

x
(i)
j

))

=
−1
m

m∑
i=1

(
y(i)

(
1− h

(
x(i)
))(

x
(i)
j

)
−
(

1− y(i)
)
h
(
x(i)
)(

x
(i)
j

))
=
−1
m

m∑
i=1

(
y(i)

(
1− h

(
x(i)
))
−
(

1− y(i)
)
h
(
x(i)
))

x
(i)
j

=
1
m

m∑
i=1

(
y(i) − y(i)h

(
x(i)
)
− h

(
x(i)
)

+ y(i)h
(
x(i)
))

x
(i)
j
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=
1
m

m∑
i=1

(
h
(
x(i)
)
− y(i)

)
x

(i)
j .

A.2 The Newton–Raphson method

Suppose we have a function f : R 7→ R. Suppose we are interested in finding a value
x such that f(x) = 0. We start with some initial guess, say x0. For the Newton–
Raphson method, the subscript indicates which iteration we are currently on. The
Newton–Raphson method performs the following update:

x = x− f(x)
f ′(x)

·

We can use this to maximize or minimize a function. We note that at the maxima
or minima of a function, f ′(x) = 0. Thus, we can use Newton’s method in the same
way as described above, using f ′(x) instead. We can use this to maximize our log-
likelihood function, and thus our update rule is

Θ = Θ− l′(Θ)
l′′(Θ)

·

We note that for logistic regression, Θ is a vector and not a real number, so
we modify the equation accordingly. We define ∇ΘJ(Θ) as the derivative of the
cost function with respect to Θ, where Θ is a vector. For the denominator, we need
something to represent the second derivative of the cost function. This is the Hessian.
Each entry of the Hessian is defined as

Hij =
∂2l(Θ)
∂θi∂θj

·

Since we need the double derivative in the denominator, and division is not defined
for matrices, we use the inverse, to get the final update rule (here, Θ is a vector).

Θ = Θ−H−1∇Θl(Θ).

Here, H is of dimensions (n+ 1, n+ 1). While Newton’s method takes fewer steps
to find the minimum, it does require finding and then inverting the Hessian, and
then multiplying with another matrix. This can be very expensive for large values of
n. When we use the Newton–Raphson method instead of gradient descent in logistic
regression, it is called Fisher scoring.

A.3 Softmax regression

Softmax regression is based on the multinomial distribution.

A.3.1 Exponential family distributions

There is a class of distributions called exponential family distributions. A distribution
belongs to this class of distributions if it can be written in the form6:

P (y; η) = b(y) exp
(
ηTT (y)− a(η)

)
.

6 CS229 taught by Andrew Ng at Stanford University, https://see.stanford.edu/

course/cs229

https://see.stanford.edu/course/cs229
https://see.stanford.edu/course/cs229
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– η is called the natural parameter. When proving that a certain distribution (such
as the Gaussian) belongs to the exponential family, it becomes convenient to
change the parameters of the original distribution to new parameters. The new
natural parameters are different for different distributions. In the Gaussian exam-
ple, the original parameters were µ and σ2, but the natural parameters are µ

σ2

and −1
2σ2 .

– T (y) is the sufficient statistic. A sufficient statistic of a sample of data about a
parameter is a statistic that provides as much information as we can possibly
get about that parameter from that data. For example, given a sample of data
distributed according to the Gaussian, it can be proved using maximum likelihood
estimation that the sample mean is the best estimate of the population mean.
Thus, for a Gaussian distribution, the sample mean is the sufficient statistic of
the population mean.

– a(η) is called the log partition function. The quantity e−a(η) normalizes the distri-
bution so that the area under the curve is 1. This has the additional property that
its first derivative yields the mean, and its second derivative yields the variance.

Many common distributions such as the Binomial, Gaussian, Weibull, and Poisson
are examples of distributions that belong to the exponential family. Pertinent to
our discussion, the multinomial distribution, which is an extension of the Bernoulli
distribution, also belongs to this class.

A.3.2 Generalized linear models (GLMs)

Generally, we can have a model that assumes that the output variable follows a
distribution that belongs to the exponential family of distributions. Such a model is
called a generalized linear model. Apart from the distribution of the output variable
belonging to the exponential family, GLMs have some other assumptions:

– Given input x, we would like to predict E[T (y)|x; Θ].
– The natural parameter η = ΘTx. If, as in the Gaussian example, η is a vector,

then we have ηi = ΘT
i x.

A.3.3 Deriving the softmax regression model

We work towards a (generalized linear) model for multi-class classification. Since we
have, in general, k classes, the predictor variable follows a multinomial distribution,
that is, y ∈ {1, 2, . . . , k}.

Our k − 1 parameters are φ1, φ2, . . . , φk−1, and our kth “parameter” is

φk = 1− (φ1 + φ2 + . . .+ φk−1).

Thus, we have k−1 parameters. Now we need an exponential family distribution.
We work on T (y), and define the vectors T (y) as follows:

T (1) =


1
0
0
...
0

 , T (2) =


0
1
0
...
0

 . . . T (k − 1) =


0
0
0
...
1

 , T (k) =


0
0
0
...
0

 .
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Since T (y) is a vector, we denote the ith element by T (y)i. With this framework in
place, we can prove that the multinomial distribution is a member of the exponential
family of distributions.

P (y;φ) = φ
T (y)1
1 φ

T (y)2
2 . . . φ

T (y)k
k

= φ
T (y)1
1 φ

T (y)2
2 . . . φ

1−
∑k−1
i=1 T (y)i

k

= exp

(
T (y)1 log(φ1) + T (y)2 log(φ2) + . . .+

(
1 −

k−1∑

i=1

T (y)i

)
log(φk

)

= exp

(
T (y)1 log

(
φ1

φk

)
+ T (y)2 log

(
φ2

φk

)
+ . . .+ T (y)k−1 log

(
φk−1

φk

)
+ log(φk)

)
.

This is in the form of an exponential family distribution, with

b(y) = 1
a(η) = − log(φk)

η =


log
(
φ1
φk

)
log
(
φ2
φk

)
...

log
(
φk−1
φk

)

 .

Now, note that ηi = log
(
φi
φk

)
. For convenience, we define ηk = log

(
φk
φk

)
=

log 1 = 0.
We define Θk = 0 so that ηk = log 1 = 0.

eηi =
φi
φk

φke
ηi = φi

φk

k∑
i=1

eηi =
k∑
i=1

φi = 1.

This yields,

φk =
1∑k

i=1 e
ηi
·

And therefore,

φi =
eηi∑k
j=1 e

ηj
·

Hence, given a vector η with k elements, we have a function that considers this
vector as input and gives us another vector, φ, also with k values, defined by the
above equation, subject to the conditions

k∑
i=1

φi = 1

φi > 0.
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This function is a generalization of the logistic function, and is called the softmax
function. Finally, we use the last assumption, which we restate here:

ηi = ΘT
i x ∀i = 1, 2, . . . , k − 1.

Each Θi is a vector of (n+ 1) dimensions. And thus, our final sof tmax regression
model is

P (y = i|x; Θ) =
eΘTi x∑k
j=1 e

ΘTj x
·

The model will output a vector:

h(x) = E[T (y)|x; Θ]

=


φ1

φ2

...
φk−1



=


P (y = 1|x; Θ)
P (y = 2|x; Θ)

...
P (y = k − 1|x; Θ)

 .
Notice that the above only outputs a (k − 1) dimension vector. We can find

P (y = k|x; Θ) = φk = 1−
k−1∑
i=1

φi.

A.3.4 Finding the optimal parameter values

To find the optimal values of Θ to fit the data, we use maximum likelihood estimation.
We start with the log-likelihood function.

`(Θ) =
m∑
i=1

logP
(
y(i)|x(i); Θ

)

=
m∑
i=1

log
k∏
j=1

(
eΘTj x

(i)∑k
l=1 e

ΘTl x
(i)

)T (y(i))j

=
m∑
i=1

k∑
j=1

log

(
eΘTj x

(i)∑k
l=1 e

ΘTl x
(i)

)T (y(i))j

·

To find the derivative of this, we first find the derivative of the softmax function.

∂

∂Θp



 eΘ
T
j x(i)

∑k
l=1 e

ΘT
l

x(i)



 =
∂

∂ΘT
p x

(i)



 eΘ
T
j x(i)

∑k
l=1 e

ΘT
l

x(i)



 ·
∂

∂Θp

(
ΘT

p x
(i)
)
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=

∂
∂ΘTp x(i)

(
eΘ

T
j x(i)

)∑k
l=1 e

ΘTl x(i)
− eΘ

T
j x(i)

· ∂
∂ΘTp x(i)

(∑k
l=1 e

ΘTj x(i)
)

(∑k
l=1 e

ΘT
l

x(i)
)2

·
∂

∂ΘT
p

(
ΘT

p x
(i)
)

=
[p = j]eΘ

T
j x(i) ∑k

l=1 e
ΘTl x(i)

− eΘ
T
j x(i)

· eΘ
T
p x(i)

(∑k
l=1 e

ΘT
l

x(i)
)2

· x(i)

=



 [p = j]eΘ
T
j x(i)

∑k
l=1 e

ΘT
l

x(i) −
eΘ

T
j x(i)

∑k
l=1 e

ΘT
l

x(i) ·
eΘ

T
p x(i)

∑k
l=1 e

ΘT
l

x(i)



 · x(i)

= ([p = j]sj − sjsp) · x(i)

= sj([p = j] − sp)x(i).

Continuing,

∂

∂Θp

 k∑
j=1

log sj

 =
k∑
j=1

∂

∂Θp
(log sj)

=
k∑
j=1

1
sj
· ∂sj
∂Θp

=
k∑
j=1

1
sj
· sj([p = j]− sp)x(i)

=
k∑
j=1

([p = j]− sp)x(i).

Next,

∂

∂Θp

 k∑
j=1

log(sj)T (y(i))j

 =
∂

∂Θp

k∑
j=1

T (y(i))j log sj

= T (y(i))j
k∑
j=1

([p = j]− sp)x(i).

At this point, we note that T (y(i))j = 1 only when y(i) = j, and so we can use
the Iverson notation. This will be useful for us later:

∂

∂Θp

 k∑
j=1

log(sj)T (y(i))j

 = x(i)

 k∑
j=1

[y(i) = j] · [p = j]− sp
k∑
j=1

[y(i) = j]

 .

Simplifying and computing the gradient of the log-likelihood yields7:

7 Ben’s answer on Cross Validation, https://stats.stackexchange.com/a/353342/

212844

https://stats.stackexchange.com/a/353342/212844
https://stats.stackexchange.com/a/353342/212844
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∂

∂Θp
`(Θ) =

∂

∂Θp

 m∑
i=1

k∑
j=1

log(sj)T (y(i))j


=

m∑
i=1

x(i)([y(i) = p]− sp).

Subsequently, we use gradient descent to find a minima.

A.3.5 Regularization

The consequence of running gradient descent be that the model will sometimes overfit
by trying to fit a curve through noise. Overfitting can be a result of multiple reasons
including trying to fit to a model that is too complex, choosing initial parameter
values wrong, among other reasons. What is common when models overfit, though,
is that the parameters tend to become very large (in magnitude). Note that our model
is trying to minimize the cost function. Therefore, an obvious way to minimize this
overfitting problem is to include the coefficients (parameters) themselves in the cost
function. We use regularization while doing this. Consider a linear regression model,
where we add the term λ

∑n
i=0 |θi| to the cost function. Thus, we obtain the following:

J(Θ) =
1

2m

m∑
i=1

(
h
(
x(i)
)
− y(i)

)2

+ λ
n∑
i=0

|Θi|.

The λ term controls how much we want to regularize the parameters. The above
is called lasso regression. We could also use L2 regularization. When we do that,
the resulting model is called ridge regression. In machine learning, the term weight
decay has caught on better, because these regularization methods effectively cause
the parameter values (or “weights”) to go down (or “decay”), resulting in a model
that does not overfit. Concretely, the cost function is

J(Θ) =
1

2m

m∑
i=1

(
h
(
x(i)
)
− y(i)

)2

+
λ

2

n∑
i=0

Θ2
i .

We added the factor 2 in the denominator for the same mathematical convenience
as for the ordinary least-squares cost function.

A.4 Likelihood and posterior: Two important tools in machine inference and
classification

Maximum Likelihood Estimation, as seen in regression, and Maximum-A-Posterior
are extremely useful tools in pointwise estimates and classification of objects. Let
D = x1, x2, . . . .xn be the training data and L be the likelihood function, assumed to
be Gaussian. Then,

L(Θ|D) =
n∏
i=1

1√
2πσ2

e− (xi−µ)2

2σ2 (A.1)

L = (µ, σ|x1, x2, . . . .xn) = L (µ, σ|x1)L (µ, σ|x2) . . . L (µ, σ|xn) (A.2)

where L = (µ, σ|x1, x2, . . . .xn) is L(Θ|D).
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MLE estimation can be computed by taking derivative with respect to µ (σ con-
stant) and with respect to σ (µ constant). Taking log on both sides of equation
(23)

lnL(Θ|D) = ln

(
n∏
i=1

1√
2πσ2

e− (xi−µ)2

2σ2

)

= ln
(

1√
2πσ2

e− (x1−µ)2

2σ2

)
+ . . .+ ln

(
1√

2πσ2
e− (xn−µ)2

2σ2

)
= −1

2
ln
(
2πσ2

)
− (x1 − µ)2

2σ2

= −1
2

ln (2π)− ln (σ)− (x1 − µ)2

2σ2
+ . . .

= −n
2

ln (2π)− nln (σ)−
n∑
i=1

(x1 − µ)2

2σ2
·

Computing ∂L
∂µ of the above equation and equating it with 0

∂L

∂µ
= 0− 0 +

n∑
i=1

xi − µ
σ2

0 =
n∑
i=1

xi − µ
σ2

µ =
∑n
i=1 xi
n

·

µ is equal to x̄ which is the mean of the sample. This implies sample mean is a
good enough estimate of the population mean. Finding the derivative with respect
to σ and equating with 0, we obtain

∂L

∂σ
= −n

σ
+

n∑
i=1

(xi − µ)2
σ−3

0 = −n
σ

+
∑n
i=1 (xi − µ)2

σ3

σ2 =
∑n
i=1 (xi − µ)2

n

σ =

√∑n
i=1 (xi − µ)2

n
·

This implies that sample standard deviation is a good estimate of population standard
deviation.

Maximum a posterior Probability (MAP). Given, D = {x1, x2 . . . , xn | xiεRn} ;
assume a joint distribution p(D, θ) where θ is random variable. The goal is to choose
good θ for D,

θMAP = argmax p(θ | D)
θMLE = argmax p(D | θ).
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Pros:

(i) Easy to compute and interpret; p(D, θ) = p(θ | D)p(θ) where p(θ | D) is the
Maximum Likelihood estimation(MLE) and p(θ) is the prior distribution on the
data. MAP interpolates between MLE and prior probability.

(ii) MAP avoids overfitting. MLE often overfits the data.

Cons:

(i) It is a points estimate, which means there is no representation of uncertainty in θ.

(ii) We must assume prior probability on θ.

MAP for a mean of a univariate Gaussian. We assume data D, such that
D = {x1, x2 . . . , xn | xiεRn} ; where θ is random variable of normal distribution with
mean µ and variance as 1. Here, x1, x2 . . . , xn are conditionally independent given θ.
This means that:

p(x1, x2 . . . .xn | Θ) =
n∏
i=1

p (xi | Θ) .

MAP estimate is given by:

θMAP = argmax p(θ | D) = argmax
p (D | Θ) p (Θ)

p (D)
· (A.3)

The above equation uses the Bayes Rule given by

p(θ | D) =
p (D | Θ) p (Θ)

p (D)
·

Considering just the numerator of the above equation for taking log (since the
denominator is a normalizing factor and will be consistent for different posteriors),
we get

θMAP = argmax (log p (D | Θ) p (Θ))
θMAP = argmax (log p (D | Θ)) + (log p (Θ)) .

In order to maximise the above equation, we find the derivative of (log p (D | Θ)) +
(log p (Θ)) with respect to θ and equate it to zero. The derivative of the first com-
ponent i.e. (log p (D | Θ)) is given by

∂ log p (D | Θ)
∂θ

=
(
∑n
i=1 xi − nΘ)

σ2

and derivative of the second component (log p (Θ)) is given by

∂ log p (Θ)
∂Θ

=
∂

∂Θ
log

(
e−

1
2 (Θ−µ)2

√
2π

)

=
∂

∂Θ

(
−1

2
log 2π − 1

2
(θ − µ)2

)
= µ−Θ.
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Hence the derivative of (log p (D | Θ)) + (log p (Θ)) with respect to θ is

=
(
∑n
i=1 xi − nΘ)

σ2
+ µ−Θ.

Equating it to zero, we obtain the posterior estimate as the following:

0 =
(
∑n
i=1 xi − nΘ)

σ2
+ µ−Θ( n

σ2
+ 1
)

Θ =
1
σ2

n∑
i=1

xi + µ

ΘMAP =
(

n

n+ σ2

)
x̄+

(
σ2

n+ σ2

)
µ.

The above equation suggests that ΘMAP is a convex combination of
prior/population mean (µ) and sample mean of the data D x̄. Based on the above
equation, the following points can be deduced,

– ΘMAP is equal to µ when σ2 = 0 (NO variance).

– As n and σ2 vary, we obtain a range of values between sample mean and prior
mean.

– When n = 0 (NO data), it indicates ΘMAP ∼ µ.

– When n→∞, it indicates ΘMAP ∼ x̄. When the data are huge, MAP estimator
is nothing but the sample mean.

A.4.1 MAP as an illustration in habitability classification

Consider an example in which a new exoplanet has been discovered and there are two
alternative hypothesis in context with its habitability (1) exoplanet is habitable and,
(2) the exoplanet is non-habitable. Based on the parameters reported for the exo-
planet, there could be two possible outcomes: ⊕ (habitable) and 	 (non-habitable).
Based on the prior information available from the catalogues, there are only 0.008
planets which are habitable. Moreover, from the entire population of discovered exo-
planets that are habitable, 98% are correctly labeled. Correspondingly, the exoplan-
ets that are confirmed as non-habitable, 97% are correctly labeled. Summarizing and
calculating the prior and posterior probabilities:

(1) habitable planet(h) – (+ class), non-habitable planet (h̄) – (− class)
(2) P (h) = 0.008, P (h̄) = 0.992,
(3) P (⊕ | h) = 0.98, P (	 | h) = 0.02,
(4) P (⊕ | h̄) = 0.03, P (	 | h̄) = 0.97.

Bayes theorem:

P (h | D) =
P (D | h)P (h)

P (D)
·

Now we know that,

hMAP = argmaxP (D | h)P (h) .
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Suppose for the newly discovered planet, investigation indicates a positive outcome
(i.e. planet is confirmed to be habitable). Does that mean that the exoplanet is
actually habitable? In order to find this, compute the posterior probability, for each
hypothesis in H (h, h̄),

P (h | ⊕) = P (⊕ | h)P (h) = 0.98 ∗ 0.008 = 0.00784

P (h̄ | ⊕) = P (⊕ | h̄)P (h̄) = 0.003 ∗ 0.992 = 0.02976

where P (h | ⊕) shows posterior probability of exoplanet being correctly labeled as
habitable and P (h̄ | ⊕) calculates the probability that the exoplanet is wrongly
labeled as habitable (it is actually non-habitable). Once the posterior probabilities of
both hypothesis are computed, output the hypothesis hMAP with the highest posterior
probability. As per the calculation shown above, P (⊕ | h̄)P (h̄) has larger value
(0.02976). Hence, even though the exoplanet is reported as habitable, it is non-
habitable.

Note on MLE and MAP: MAP can be interpreted as forming and changing opin-
ions via an evolutionary process. We may have an opinion or belief that decides in
forming initial decision until that gets modified by new evidence gathered by inter-
actions or experience (likelihood on data) from data. For example, let us consider
the role of swing votes in choosing a candidate during an election. If you are an ide-
ologue, there is no likelihood estimation interacting with your past beliefs to change
your posterior prediction. There, the likelihood function plays no role (i.e. no data
∼ x̄ = 0 i.e. ΘMAP ∼ µ (prior mean). The different scenarios for using MLE or MAP
are summarized below:

– In the absence of prior, MLE is used.
– In case of flat prior, MLE ∼ MAP.
– Use MLE if we have an abundance of data.
– In the absence of data, we may just use prior mean.

Parameter Estimation in Regression by MLE. MLE on linear regression: y = Xb+ε
where X is the data matrix and b are the regression coefficients to determine; ε is
the Gaussian noise. Need to show that,

b =
(
XTX

)−1
XT y.

(XTX)−1 is pseudo-inverse. Let’s look at the general least square optimization prob-
lem: minimize the residuals

∑n
i=1 (yi − a0Xi − a1)2. Writing the residuals to n-vector

form, we obtain  ε1
ε2
. . .
εn

 =

y1

y2

. . .
yn

−
 1 X1

1 X2

. . . . . .
1 Xn

(a0

a1

)
ε = y −Xb.

Therefore, the multiple regression problem i.e. least square minimization of the resid-
uals becomes, ∥∥ε2∥∥ =

∥∥εT ε∥∥ = (y −Xb)T (y −Xb) .

The objective is to minimize (y −Xb)T (y −Xb) by taking its derivative with respect
to b and equating it to 0. Rearranging the terms, we obtain
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= (y −Xb)T (y −Xb)

=
(
− (Xb)T + yT

)
(y −Xb)

= −bTXT y + bTXTXb+ yT y − yTXb.

We know that XT y =
(
yTX

)T . Keeping this in the above equation,

= −bTXT y + bTXTXb+ yT y − bT
(
yTX

)T
= −bTXT y + bTXTXb+ yT y − bTXT y

= yT y − 2bTXT y + bTXTXb.

Taking its derivative with respect to b,

=
∂

∂b

(
yT y − 2bTXT y + bTXTXb

)
. (A.4)

We know that,

∂

∂b

(
bT cb

)
=
(
c+ cT

)
b.

Assume c = XTX, which means cT = c and so, (c+ cT ) = 2c. Keeping this in above
equation,

∂

∂b

(
bT cb

)
= 2cb

∂

∂b

(
bTXTXb

)
=
(
2XTXb

)
.

Keeping the value in equation to find derivative,

=
∂

∂b

(
yT y − 2bTXT y + bTXTXb

)
=
(
−2XT y + 2XTXb

)
2XTXb = 2XT y

b =
(
XTX

)−1
XT y.

Regression coefficients, b =
(
XTX

)−1
XT y, can thus be obtained by MLE.

A.5 Evaluating classification models

Having used a classification model, we also need to know how to evaluate its perfor-
mance. We begin by stating some definitions. The ground truths of a dataset are the
class labels in the dataset. These are the true values of the classes (this also applies
to regression: the ground truth is the actual Y value for each training example). Sup-
pose we use a train-test split. We train the model on the training set, and make it
predict on the remaining 30% so that we can see how well it performs on data it has
never seen before. Given that our model predicts on the test set, the true positives
are the examples where the model predicts a positive class, and the ground truth
for that example is also positive. False positives are where the model predicts true,
but the ground truth is false. False positives in statistics are called Type I errors.
True negatives and false negatives (called Type II errors) can be thought about in a
similar way.
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Fig. A.1. A typical Confusion matrix. Source: https://tiny.cc/confusionmatrix.

A.5.1 The confusion matrix and metrics

The confusion matrix is simply a matrix of the counts of everything we defined above.
Figure A.1 shows how this is constructed.

Given the confusion matrix, we can now begin to define the metrics to judge our
classifiers.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2 · Precision · Recall
Precision + Recall

·

Accuracy is pretty intuitive, and the others are described below:
– Precision answers the question, “What fraction of positives predicted by the model

were right?”
– Recall answers the question, “What fraction of actual positive classes did the

model get right?”
– The F1 score is the harmonic mean of the recall and precision. It is a neat way

to sum things up.
Another commonly quoted metric is the receiver operating characteristic (ROC)

curve. This is a curve drawn with the true positive rate (recall) on the y-axis, and the
false positive rate ( FP

FP+TN ) on the x-axis. This is done only with binary classification
tasks. Figure A.2 shows an example.

To draw this, recall that the logistic regression model (for binary classification)
gives us a probability as an output, rather than a class directly. We use a threshold
value (say 0.5) to decide the class. Call this threshold value as T . By varying T
systematically, we obtain many values of true positive rate and true negative rate,
and we can join all these points to form a smooth curve. This curve is the ROC
curve. The line y = x is what we get if the true positive rate was always equal to the
false positive rate. We want the ROC curve to be as far from it as possible, towards
the top left corner. This is because at the diagonal line, the model is basically just
guessing the class. Clearly, the ideal ROC is one that just goes up the y-axis till the
top-left corner, and then goes along the top of the graph. This however, is almost
never doable, since it implies that the algorithm absolutely never goes wrong at all.

https://tiny.cc/confusionmatrix
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Fig. A.2. The ROC curve. Source: http://qr.ae/TUpjCN.

Appendix B: Neural networks: A comprehensive introduction

Neural networks are quickly becoming omnipresent for many tasks, including image
recognition, text summarization and synthesis, and speech recognition. There are a
couple of reasons why they are become so popular in recent years. First, we have a
lot more data these days than earlier, and this means learning algorithms have more
to learn from. Secondly, computers are more powerful now, and hardware support
in the form of GPUs makes neural networks significantly quicker to train. Finally, a
new “activation function” called ReLU (rectified linear unit) made neural networks
significantly better at a lot of tasks.

Because of the depth of the field and the pace at which research in “deep learning”,
as it is called, is progressing, it is practically impossible to concisely discuss all of
neural networks in anything less than a book.

B.1 Introduction

At a very high level, neural networks are a black box. They take in some inputs, and
yield outputs that are extraordinarily accurate.

http://qr.ae/TUpjCN
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This is a high-level diagram of a neural network. It needs some data to train.
Later, we can provide some inputs and expect highly accurate outputs. The circles
are typically called nodes or neurons. The idea is to simulate what goes on in the
human brain. Arrows in diagrams like this represent weighted connections. We now
unfold that box in the middle.

Inside, you simply have more neurons. These neurons are organized in layers, with
the connections connecting neurons in one layer to neurons in the next. Images like
the one above give the impression that every neuron is necessarily connected to every
other. This certainly need not be the case. In fact, we could also have connections
jump over layers – we call these skip-connections. However, beyond simply mentioning
that, we will not discuss it further.

We have a layer that collects inputs. These input layer nodes do something, and
pass the results on to so-called hidden layers. Those hidden layers in turn do some-
thing, and pass the results forward, until we get outputs. In theory, we could cus-
tomize what every neuron in every layer does; in practice, that becomes cumbersome,
and we only do such customization layer-wise, meaning that all neurons in one layer
will perform the same operation.

What does each neuron do? If you see the figure above, each neuron receives
several inputs from weighted connections. We specifically used the term weighted
connections, because the inputs are not treated equally. A neuron will first add up
all the inputs that it gets, but it will perform a weighted sum. After performing a
weighted summation, the neuron ends up with a single number. It then computes
a function of that number, and the result of that is the neuron’s final output – the
one that it broadcasts to whatever it happens to be connected to at future layers.
Loosely, a neuron does this:

f(x1, x2, . . . , xn) = g(w1x1 + w2x2 + . . .+ wnxn) = g
(
wTx

)
.

Those w terms are called the weights. It is those weights that we learn using
gradient descent. The function g is called the activation function. This name is partly
historical. In the earlier days of neural networks, this function gave an output of 1 if
the weighted sum was higher than a set threshold, and gave output 0 otherwise, and
the neuron was “activated” if the weighted sum was above that threshold.

So, given inputs, the input layer neurons will forward the inputs to the first hidden
layer, which compute a weighted sum, compute the activations (the results of the
activation function), and pass these to the second hidden layer. The neurons in this
layer will in turn do the same thing, and so on until we get outputs. This process
is called forward propagation, and is the first step used in gradient descent while
training a neural network.

We we will use the following notation. g(·) will still represent the activation func-
tion; but since the activation used can be different at each layer, we will be explicit
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about that, and write g[l](·) to denote the activation at layer l. We will not actually
care about the outputs of individual neurons; rather, we will look at the outputs of
an entire layer (which will of course, be a vector). We will represent the weighted
sums computed by the neurons at a layer by z[l], and the outputs (the activations) by
a[l]. The inputs will simply be denoted by the vector x, and to simplify things, we let
a[0] = x. At each layer, the weights form a matrix, where the first row corresponds to
the weights of the outputs from the first neuron, the second row corresponds to the
weights of the outputs from the second neuron, and so on. We will represent this by
W [l]. We will denote the number of layers by L, and the number of neurons at layer
l by n[l]. The number of layers in the above diagram are three, because the layer of
inputs are not counted as an actual layer (since those neurons are not really doing
anything).

At a given layer l, the computations performed are:

z[l] = W [l]a[l−1] + b[l]

a[l] = g(z[l]).

This is because W [l] has dimensions (n[l], n[l−1]), and a[l], z[l], and b[l] have the
dimensions (n[l], 1).

Let us revisit to forward propagation now. We first compute weighted sums, now
represented as a matrix multiplication, and then compute the activations from those
weighted sums. In neural networks, we explicitly represent the constant term – we
call this constant term the bias. Typically, all the neurons in a layer use the same
value of the bias, so b[l] is technically a real number, but because the result of the
multiplication W [l]a[l−1] is a vector, we simply create a vector of the same dimensions,
where every value is that identical bias.

B.2 Backpropagation

The parameters of a neural network are the weights and the biases.
We cannot directly compute the gradients with respect to the weights in the first

few layers. Because of the way that we computed the outputs, left to right, we have
to compute the gradients in the reverse order – from right to left – and that gives
this step its name. We now discuss how we compute the gradients. Essentially, we
simply use the chain rule.

∂L

∂W [L]
=

∂L

∂a[L]

∂a[L]

∂z[L]

∂z[L]

∂W [L]
·

Similarly, we can continue and compute the gradients with respect to the penul-
timate layer:

∂L

∂W [L−1]
=

∂L

∂a[L]

∂a[L]

∂z[L]

∂z[L]

∂a[L−1]

∂a[L−1]

∂z[L−1]

∂z[L−1]

∂W [L−1]
·

We simply continue this way till we hit the first layer. Consider the problem of
binary classification. We will use the binary cross-entropy loss as before. For now, we
assume that every activation function is the sigmoid function.

∂L

∂a[L]
=

∂

∂a[L]

(
−y log a[L] − (1− y) log

(
1− a[L]

))
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= − y

a[L]
+

1− y
1− a[L]

=
−y + ya[L] + a[L] − ya[L]

a[L]
(
1− a[L]

)
=

a[L] − y
a[L]

(
1− a[L]

) ·
That was the first term. The second term is computed as follows

∂a[L]

∂z[L]
=

∂

∂z[L]

1
1 + exp(−z[L])

= a[L]
(

1− a[L]
)
.

Our next term is also easy to compute:

∂z[L]

∂a[L−1]
=

∂

∂a[L−1]

(
W [L]a[L−1] + b[L]

)
= W [L].

The next term is the same as for the last layer, so we will not repeat that calcu-
lation. Finally,

∂z[L−1]

∂W [L−1]
=

∂

∂W [L−1]

(
W [L−1]a[L−2] + b[L−1]

)
= a[L−2]T .

From these, we get
∂L

∂W [L]
=
(
a[L] − y

)
a[L−1]T .

Moving on, we have
∂L

∂b[L]
=
(
a[L] − y

)
and

∂L

∂W [L−1]
=
(
a[L] − y

)
W [L]a[L−1]

(
1− a[L−1]

)
a[L−2]T .

It turns out that the right form for this is:

∂L

∂W [L−1]
=
(
W [L]T

(
a[L] − y

))
×
(
a[L−1]

(
1− a[L−1]

))
a[L−2]T .

The × symbol denotes element-wise multiplication, not a matrix multiplication.
More generally, we have

∂L

∂z[l]
=

∂L

∂a[l]
× g[l]′(z[l])

∂L

∂W [l]
=

∂L

∂z[l]
a[l−1]T

∂L

∂a[l−1]
= W [l]T ∂L

∂z[l]

∂L

∂b[l]
=

∂L

∂z[l]
·
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B.3 Activation functions

In practice, modern neural networks do not use sigmoid in all the layers – typically,
only the last layer uses sigmoid activations, and only when the problem is binary
classification. Similarly, when our problem is multi-class classification, we use the
softmax activation function.

The ReLU is defined as
g(x) = max(0, x).

We cannot just use a simple linear activation function, g(x) = x. After two layers,

z[1] = W [1]x+ b[1]

a[1] = W [1]x+ b[1]

z[2] = W [2]a[1] + b[2]

a[2] = W [2]a[1] + b[2]

= W [2]
(
W [1]x+ b[1]

)
+ b[2]

= W [2]W [1]x+W [2]b[1] + b[2].

The first term is simply some new matrix, say W , times x. And the second term
is a vector whose dimensions equal (n[2], 1), the same as b[2]. So even with two layers,
we end up with the equivalent of just one layer.

The ReLU activation is not differentiable at 0, which is a problem since we need
to compute its gradient. During implementation, we arbitrarily set it to either 0 or 1.

There are other activation functions as well:

– g(x) = tanh(x) is sometimes used instead of sigmoid.
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– Another activation function sometimes used is the Exponential Linear Unit
(ELU). It is defined as

g(x;α) =
{

x; x ≥ 0
α(ex − 1); x < 0.

B.3.1 Vanishing gradient problem

Consider the sigmoid activation function. Specifically, we look at its derivative.

g′(x) = g(x)(1− g(x)).

When x gets large, g(x)→ 1, and therefore 1− g(x)→ 0, and we have g′(x)→ 0.
Similarly, when x is very small (that is, high in magnitude, but negative), then
g(x) → 0 ⇒ g′(x) → 0. This is a problem. But there is another problem. The
maximum value of the gradient can be found as follows:

f(x) = g(x)(1− g(x))

= g(x)− g2(x)

f ′(x) = g′(x)− 2g(x)g′(x) = 0

⇒ g′(x) = 2g(x)g′(x)

⇒ g(x) =
1
2
·

Therefore, the maximum value of the gradient is 1
4 . As we perform backpropa-

gation, layer by layer, these gradients will get multiplied and thus get smaller and
smaller. The deeper the network, the smaller the gradients, and the bigger this prob-
lem becomes. This is called the vanishing gradients problem. This is precisely why
networks using only the sigmoid activation have trouble learning well.

ReLU does not suffer from this problem technically, since its gradients are either
0 or 1. But it has its own curious problem, called the dying ReLU problem. In this
situation, all the inputs to a particular neuron are such that the output is 0, and
so the gradient is also 0 and this neuron never really learns (since during weight
update, the gradient is 0). This is rare, but happens rarely and can render a network
less effective.

To make sure this never happens, an activation function called the leaky ReLU
was proposed. Rather than force the output to 0 on the negative side, we allow a
small amount to “leak”. So when x < 0, g(x) = 0.01x, and we could use any constant
instead of 0.01.

B.3.2 Replicated weight neural network (RWNN)

Artificial Neural networks (ANN) consist of several layers – input, hidden and output,
as shown in Figure 2. These layers are designed to forward and back propagate error
such that the difference between the target and output get minimized after certain
number of epochs. An epoch uses same training samples and update weights. On the
contrary, an iteration runs over different set of training samples every time. Thus, a
batch of epochs is called an iteration. Usually, the network trains itself by updating
an initial random choice of weights through back propagation. We propose a novel
scheme, RWNN to train the network. It is built with randomly initialized weights
where learning rate and number of neurons across layers are kept same as in ANN.
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Fig. B.1. Architecture pipeline for replicated weight neural network. (For a better
readability please refer to the online version).

The first iteration generates a balanced training set by random-oversampling and
trains the network. This is identical to the original vanilla feed forward neural net.
However, the optimized weights obtained from first iteration are utilized in training
network during the second iteration. Precisely, this is how RWNN is different from
a standard ANN architecture. ANN updates weights in every iteration (which any
other iterative method should do anyway). The essence is that already optimized
network (not completely optimized though, since it was trained using few samples
from majority class) is passed down to next level of training with the new set of
data samples. The cascading effect is observed when the same network is tuned in
successive iterations with entirely new data set generated on-the-fly while weights
get tuned in each iteration. Accuracy is recorded at every iteration and the whole
process is carried out till a fixed number of iterations are completed.

Most neural network architectures use random initialization of edge weights and
the iterative change of the weights to improve the overall performance of a neural net-
work. Instead of random re-initialization of weights in every iteration, RWNN uses an
optimized set of weights and update the set of weights accordingly. In other words, the
method rushes convergence by avoiding random re-initialization of weights in every
iteration and setting a threshold on iterations rather than on error (MSE) (Fig. B.1).

B.3.3 Synthetic oversampling using Parzen Window estimation

Artificial oversampling [50] is an approach to handle the effects of bias due to a
class with a large sample size [51] in data. Typically, people try to artificially add
samples to the classes with lesser number of samples, namely the mesoplanet and the
psychroplanet classes. Essentially, the paradigm of choice is to analyze the class-wise
distribution of the data and to generate reasonable samples which reflect the general
properties of their respective classes.

In this approach, we estimate the density of the data by approximating a dis-
tribution function empirically – we do not assume that the numeric values in the
data samples are drawn from a standard probability distribution. The method we
use for this is known as window estimation. This approach was developed by Rosen-
blatt and Parzen [58,88]. In a broader sense, window estimation is a method of kernel
density estimation (KDE). In our work, we use this to augment the samples of the
different classes in the data and we choose the features that we require in different
experimental scenarios.

It is also possible to augment variables from the top 85% of the features based
on their importance as determined by random forest classifiers [89]. The experiments
using KDE are done in the same manner as the experiments using undersampling.
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B.3.4 Generative adversarial networks

Generative adversarial networks (GANs) are a powerful framework of a pair of com-
peting neural networks where the generative network imitates the input and dis-
criminating network differentiates between authentic and synthetic samples. They
are popularly used for unsupervised learning for tasks as image generation from
descriptions or rough sketches, getting high resolution images from low resolution
ones etc. The two networks contest with each other, where the generator creates
realistic images and the discriminator forces the generator to perform better.

It can also be used a semi-supervised learning technique where the discriminator
learns the target function based on both labeled and unlabeled generated data. A
semi-supervised classifier takes a small portion of labeled data and a larger amount
of unlabeled data and uses both to learn an inferred function, which can further be
used to classify new points. This can enhance learning of cluttered data, which have
a large diversity. GANs are not frequently used for classification of numeric/text
data; however, it is a method worth exploring in binary classification of astronomical
objects.

Based on the conservative set of features in each experimental setup, described in
Sections 4.1 and 10, objects from the three classes are cluttered. By not considering
surface temperature and associated attributes, we lose the clear demarcation between
classes and that makes the classification task we aim to accomplish quite challenging.

B.3.5 A novel neural network pipeline

Using the RWNN architecture and GANs, [53] a “fusion-neural net approach” may
be proposed where RWNN is applied in conjunction with GANs to achieve desirable
performance metrics. The pipeline is as follows:

1. Classification between non-habitable, mesoplanet, and psychroplanet classes:
First, we employ RWNN to separate the non-habitable class, which is the major-
ity class. At this stage, although a high accuracy is achieved in discriminating
between the non-habitable class on one side, and the mesoplanet and psychro-
planet classes on the other side, the discrimination between the classes of meso-
planets and psychroplanets is not perfect.

2. Classification between mesoplanet, and psychroplanet classes: Once the non-
habitable class has been separated out, we use a GAN to distinguish between
the mesoplanet and psychroplanet samples. For this, the generator function gen-
erates samples within the network with some amount of induced noise, and the
discriminator tries to best separate the classes. The effects of the two compo-
nents of the GAN put together amount to a robust discrimination between the
mesoplanet and the psychroplanet classes.

The entire pipeline of the fusion network is shown in Figure B.2 and the config-
uration of the GAN is shown in Figure B.3.

B.3.6 Training the GAN for categorical semi-supervised learning

Standard GANs turn the discriminator into a classifier that is only useful for deter-
mining whether a given data point x belongs to the input data distribution or not. For
classification, we aim to train a discriminator that classifies the data into k categories
by assigning a label y to each input sample x. In a standard GAN, the discriminator
is used to determine whether a given data point belongs to the distribution of the
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Fig. B.2. Fusion neural-net approach for classification: First tier of the network classifies
between habitable and non-habitable planets; second tier architecture uses GAN to discrim-
inate among mesoplanets and psychroplanets (classes within the habitable class): the fused
network produces perfect classification when Min Mass, P. distance and star properties are
used as features (see Tab. 2).

input sample. In order to use GANs for classification, the discriminator should not
only model data distribution but also learn the feature representation for separat-
ing the data into classes. Using it as a categorical classifier requires the objective to
accomplish the following:

1. Instead of the discriminator returning a probability of a sample being real or
synthetic, it should provide class assignments to all the encountered samples,
while remaining uncertain of class assignments made to synthetic generated data.

2. Instead of generating samples replicating the input dataset, each synthetic sam-
ple should belong to precisely one class with a high certainty; the number of
synthetic samples generated in the neural network should be balanced across all
the classes [52].

The probability of an example x belonging to one of the k mutually exclusive
classes can be modelled using a soft-max assignment based on the discriminator
output. The generator produces synthetic samples with random noise, which are used
along with the authentic samples to train the discriminator in batches. This forces
the generator to replicate the original data, which contributes to training samples
for improving classification. By providing feedback to the generator to improve the
replication of input, the discriminator is transformed into a classifier which has been
trained both by labeled input data and unlabeled generated data in mini-batches. The
discriminator still identifies individual examples as real data or generated data, but it
is now able to use the other examples in the mini-batch to enhance the coordination
between gradients [53]. We compute statistics when discriminator trains on the real
batch, followed by the ones obtained by training on a synthetic batch. Training
batch-wise mitigates problem of mode collapse by looking at multiple examples in
a combination rather than in isolation. The Figure B.3 presents an overview of the
architecture of the networks.

In addition to trying the fusion-net architecture on the data, GANs as classifiers
can be tested in a stand-alone experiment where two classes are habitable, which
comprise of the mesoplanet and psychroplanet samples together, and non-habitable
samples. The fusion-net architecture and GAN would constitute Phase I of exper-
iments. Phase II shall highlight limitations of standard activation functions in the
backpropagation part of vanilla feed-forward neural network and suggest improve-
ments. The outcome of this phase is particularly interesting in the context of the
problem. We reiterate that, such architectural innovations are usually not backed by
hard Mathematical proofs as human neural networks are too complex to mimic. To
be precise, it is often, not possible to explain why a particular architecture such as
the one described here, succeeds or fails!
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Fig. B.3. Layers of the Generator and Discriminator in our GAN model with batch-size of
128.

B.4 Disadvantages of neural networks

B.4.1 Speed

Neural networks are slow to train. Larger neural networks can take days to train, even
on the best hardware. Neural networks are almost always trained on GPUs (Graphics
Processing Units), rather than the CPU of the computer. While CPUs have about
4–8 cores, GPUs can have up to thousands of cores. Of course, the cores on a CPU
are individually much more powerful than GPU cores.

The idea behind using GPUs for training is simple: to train a neural network, you
need to do lots of matrix multiplications. If you give a large matrix multiplication
to a CPU, it takes time, because even though its cores are much faster and more
powerful, there still are only 4–8 cores. A GPU, on the other hand, has thousands of
cores that can very quickly do matrix multiplications.

B.5 Interpretability

With more “classical” machine learning models like linear regression, we have coef-
ficients that are relatively easy to interpret in terms of the original variables of your
data. With neural networks, it is much harder to figure out why it works even when
it does. There has been a lot of work on interpretability in neural networks. A lot of
these work on visualizing the loss surface8, or as in the seminal paper by Zeiler and
Fergus9, visualizing the activations at each layer of the network.

8 H. Li et al., Visualizing the loss landscape of neural nets, in Advances in Neural
Information Processing Systems. (2018)

9 M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks. European
conference on computer vision. (Springer, Cham, 2014)
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Fig. C.1. A simple neural network.

Appendix C: Neural networks with SBAF and A-ReLU

A neural network is an interconnection of neurons arranged in hierarchy and predom-
inantly used to perform predictions and classification on a dataset. Commonly, the
input is given to the network over and over again to tune the network a little each
time, so that when the new inputs are given, the network can predict its outcome. To
explain how neural network works, we will run through a simple example of training
a small network shown in figure below. Keeping its configuration simple, we have
kept 2 nodes in input, hidden and output layer and have chosen SBAF and A-ReLU
as activation functions to demonstrate the working of back propagation [90].

C.1 Basic structure

Let us assume the nodes at input layer are i1, i2, at hidden layer h1, h2 and at output
layer o1, o2. To start off, we assign some initial random numbers to weights and biases
and move on with a forward pass demonstrated in next subsection (Fig. C.1).

C.2 The forward pass using SBAF and A-ReLU

This section computes the activation of neurons at hidden and output layers by using
SBAF and A-ReLU. We start with the first entry in the data set of two inputs i1
and i2. The forward pass is a linear product of inputs and weights added with a bias.
Calculating the total input at h1.

h1net = w1 · i1 + w2 · i2 + b1

h2net = w3 · i1 + w4 · i2 + b1.

Use SBAF to calculate the activation’s of hidden neuron h1 by the formula, y =
1

1+kxα(1−x)1−α .

h1out =
1

1 + k(h1net)α(1− h1net)1−α

h2out =
1

1 + k(h2net)α(1− h2net)1−α ·
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In parallel, if we use A-ReLU to compute the activation’s of hidden neuron h1, the
formula is y = kxn if x > 0 else y = 0, therefore

h1out = k(h1net)n

h2out = k(h2net)n

assuming h1net > 0 and h2net > 0.
Repeat the process for neurons at output layer.

o1net = w5 · h1out + w6 · h2out + b2

o2net = w7 · h1out + w8 · h2out + b2.

While using SBAF, the activation of neurons are

o1out =
1

1 + k(o1net)α(1− o1net)1−α

o2out =
1

1 + k(o2net)α(1− o2net)1−α ·

For A-ReLU, the activation are

o1out = k(o1net)n

o2out = k(o2net)n

assuming o1net > 0 and o2net > 0.
Since we initialized the weights and biases randomly, the outputs at the neurons

are off-target. Conclusively, we need to compute the difference and propagate it back
to the network. The next subsection computes the error gradient by using back
propagation and adjust the weights to improve the network. Calculating the errors,

Error = Erroro1 + Erroro2

Erroro1 =
1
2

(o1target − o1out)
2

Erroro2 =
1
2

(o2target − o2out)
2
.

C.3 The backward pass for both SBAF and A-ReLU

This part deals with computing the error margins, the error resulted because the
weights are randomly initialized. Therefore, the weights need adjustments so that
the error can be decreased during predictions. Calculating the change of weights in
done in two steps. The rate of change in error with respect to weights in computed
in first step. In the second, the weights are updated by subtracting a portion of
error gradient from weights. Similar to the forward pass, the backward pass is also
computed layer-wise, but in the reverse mode.
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Fig. C.2. A simple neuron at the output layer.

C.3.1 At output layer

Moving backwards, lets consider weight w5 that needs to be updated. To find the
error gradient with respect to w5, i.e. ∂ET∂w5

we use the chain rule shown in the equation
below (here ET is the total error at both neurons of output).

∂ET
∂w5

=
∂ET
∂o1out

· ∂o1out

∂o1net
· ∂o1net

∂w5
·

Taking each component one at a time on the RHS of the equation, we first derive
∂ET
∂w5

(Fig. C.2):

ET = Eo1 + Eo2

ET =
1
2

(o1target − o1out)
2 +

1
2

(o2target − o2out)
2

∂ET
∂o1out

= 2 · 1
2

(o1target − o1out) · (−1) + 0

∂ET
∂o1out

= − (o1target − o1out) .

(C.1)

Next we compute the derivative of the activation functions in terms of ∂o1out
∂o1net

. We are
using SBAF and A-ReLU, and dervatives of both the functions are available. First,
while using SBAF:

o1out =
1

1 + k(o1net)α(1− o1net)1−α

∂o1out

∂o1net
=
o1out (1− o1out)
o1net(1− o1net)

· (α− o1net).
(C.2)

While using A-ReLU,
o1out = k.(o1net)n

∂o1out

∂o1net
= n.k

1
n .(o1out)

n−1
n .

(C.3)
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Finally the third component of the chain rule ∂o1net
∂w5

(this is common for both SBAF
and A-ReLU),

o1net = w5 · h1out + w6 · h2out + b2

∂o1net

∂w5
= h1out.

(C.4)

The error gradient with respect to w5 for SBAF is derivable by putting (21) and (22)
and (24) together in ∂ET

∂w5
,

∂ET
∂w5

= − (o1target − o1out) ·
o1out (1− o1out)
o1net(1− o1net)

· (o1net − α) · h1out.

Likewise the other gradients are also computed as,

∂ET
∂w6

= − (o1target − o1out) ·
o1out (1− o1out)
o1net(1− o1net)

· (o1net − α) · h2out

∂ET
∂w7

= − (o2target − o2out) ·
o2out (1− o2out)
o2net(1− o2net)

· (o2net − α) · h1out

∂ET
∂w8

= − (o2target − o2out) ·
o2out (1− o2out)
o2net(1− o2net)

· (o2net − α) · h2out.

Correspondingly, the error gradient with respect to w5 for A-ReLU is derived by
keeping (21), (23) and (24) together,

∂ET
∂w5

= −n.k 1
n (o1target − o1out) · (o1out)

n−1
n · h1out.

Likewise the other gradients are also computed as,

∂ET
∂w6

= −n.k 1
n (o1target − o1out) · (o1out)

n−1
n · h2out

∂ET
∂w7

= −n.k 1
n (o2target − o2out) · (o2out)

n−1
n · h1out

∂ET
∂w8

= −n.k 1
n (o2target − o2out) · (o2out)

n−1
n · h2out.

Both activation functions, the weights are adjusted as:

wnew5 = w5 − η ·
∂ET
∂w5

(C.5)

where η is the learning rate.

C.3.2 Hidden layer

Continuing the backward pass, this part demonstrate the computation of error gra-
dients with respect to weights that are connecting input and hidden layer. Once the
gradients are found, the weights can be updated by the formula used previously. Thus,
we need to derive ∂ET

∂w1
and correspondingly the other gradients can be obtained.
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We need to find ∂ET
∂w1

.
Apparently, if ET is the total error at output layer, then

∂ET
∂w1

=
∂Eo1
∂w1

+
∂Eo2
∂w1

·

Computing both the additive terms by using chain rule,

∂Eo1
∂w1

=
∂Eo1
∂o1out

· ∂o1out

∂o1net
· ∂o1net

∂h1out
· ∂h1out

∂h1net
· ∂h1net

∂w1
(C.1)

∂Eo2
∂w1

=
∂Eo2
∂o2out

· ∂o2out

∂o2net
· ∂o2net

∂h1out
· ∂h1out

∂h1net
· ∂h1net

∂w1
· (C.2)

Finding the multiplicative terms of equation (1) (please note that this is with refer-
ence to SBAF. For A-ReLU, a similar procedure is followed),

∂Eo1
∂o1out

= −(o1target − o1out)

∂o1out

∂o1net
=
o1out(1− o1out)
o1net(1− o1net)

· (α− o1net)

∂o1net

∂h1out
= w5

(
∵ o1net = w5 · h1out + w6 · h2out + b2 and

∂o1net

∂h1out
= w5

)
∂h1out

∂h1net
=
h1out(1− h1out)
h1net(1− h1net)

· (α− h1net)

∂h1net

∂w1
= i1

(
∵ h1net = w1i1 + w2i2 + b1 and

∂h1net

∂w1
= i1 + 0

)
.

Similarly, computing all the components of (2),

∂Eo2
∂o2out

= −(o2target − o2out)

∂o2out

∂o2net
=
o2out(1− o2out)
o2net(1− o2net)

· (o2net − α)

∂o2net

∂h1out
= w7 (∵ o2net = w7h1out + w8h2out + b2) .
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We already know the values of ∂h1out
∂h1net

and ∂h1net
∂w1

. Similar calculations hold valid for
computing gradient of A-ReLU.

Adding up everything,
∂ET
∂w1

=
∂Eo1
∂w1

+
∂Eo2
∂w2

·

Adjusting the weight

wnew1 = w1 − η ·
∂ET
∂w1
·

Likewise, the remaining error derivatives, ∂ET∂w2
, ∂ET∂w2

, ∂ET∂w3
, and ∂ET

∂w4
can be com-

puted in the similar manner for SBAF as well as for A-ReLU. Their corresponding
weights are adjusted by using the same weight-update formula.

Appendix D: Details of data augmentation methods

In Section 4.2.2, a technique to estimate the probability density function of a sequence
of random variables, called KDE (using Parzen-window estimation), was briefly
described. We elaborate on the method and validate the method by performing a
density estimation on random numbers generated from several known analytic con-
tinuous and discrete distributions. As a part of this exercise, we have presented
goodness-of-fit scores for the estimated distributions. In addition to that, we have
also plotted the graphs of the data points for a visualization of the density (gener-
ated using the standard analytic distributions as well as a Parzen-window estimate
of those distributions).

We provide evidence of the working of Parzen-window estimation for different
standard continuous and discrete probability distributions.

D.1 An analytical exposition of density exploration

Let X = x1, x2, . . . , xn be a sequence of independent and identically distributed
multivariate random variables having d dimensions. The window function used is a
variation of the uniform kernel defined on the set Rd as follows:

φ(u) =

{
1 uj ≤ 1

2 ∀j ∈ {1, 2, . . . , d}
0 otherwise.

(D.1)

Additionally, another parameter, the edge length vector h = {h1, h2, . . . hd}, is
defined, where each component of h is set on a heuristic that considers the values of
the corresponding feature in the original data. If fj is the column vector representing
some feature j ∈ X and

lj = min{(a− b)2 ∀a, b ∈ fj}
uj = max{(a− b)2 ∀a, b ∈ fj},

(D.2)

the edge length hj is given by,

hj = c

(
uj + 2lj

3

)
(D.3)

where c is a scale factor.
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Let x′ ∈ Rd be a random variable at which the density needs to be estimated.
For the estimate, another vector u is generated whose elements are given by:

uj =
xj
′ − xij
hj

∀j ∈ {1, 2, . . . , d}. (D.4)

The density estimate is then given by the following relationship:

p(x′) =
1

n
∏d
i=1 hi

n∑
i=1

φ(u). (D.5)

D.2 Generating synthetic samples from the estimated empirical distribution

Traditionally, random numbers are generated from an analytic density function by
inversion sampling. However, this would not work on a numeric density function
unless the quantile function is numerically approximated by the density function. In
order to avoid this, a form of rejection sampling has been used.

Let r be a d-dimensional random vector with each component drawn from a uni-
form distribution between the minimum and maximum value of that component in
the original data. Once the density, p(r) is estimated by equation (D.5), the proba-
bility is approximated to:

Pr(r) = p(r)
d∏
j=1

hj . (D.6)

To either accept or reject the sample r, another random number is generated
from a uniform distribution within the range [0, 1). If this number is greater than the
probability estimated by equation (D.6), then the sample is accepted. Otherwise, it
is rejected.

For the PHL-EC dataset, synthetic data were generated for the mesoplanet and
psychroplanet classes using this method by taking c = 4 for mesoplanets and c = 3
for psychroplanets (in Eq. (D.5)). 1000 samples were then generated for each class
using rejection sampling on the density estimate. In this method, the bounding mech-
anism was not used and the samples were drawn out of the estimated density. Here,
the top 85% of the features by importance were considered to estimate the proba-
bility density; the values of the remaining features were copied from the naturally
occurring data points and shuffled between the artificially augmented data points.
The advantage of using this method is that it may be used to estimate a distribution
which resembles more closely the actual distribution of the data. However, this pro-
cess is a little more complex than assuming a standard probability distribution in the
data. Nonetheless, this is an inherently unassuming method and can accommodate
distributions in data which are otherwise difficult to describe using the commonly
used methods for describing the density of data.

D.3 Parzen-Window estimation of continuous random variables

For the tests involving univariate continuous random variables, standard distributions
were used with the location parameter set to 0 and the scale set to 1. The distributions
used in their univariate forms were:
(1) Normal
(2) Cauchy
(3) Laplace
(4) Rayleigh
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Table D.1. Mean squared error for continuous standard distributions.

Distribution c value MSE (×10−5)

Normal (univariate) 0.2 0.8164
Normal (multivariate) 0.23 3.3946

Cauchy 0.0002 1.7011
Laplace 0.07 3.3099
Rayleigh 0.15 4.3095

Fig. D.1. Estimates for univariate continuous distributions. (a) Normal. (b) Cauchy.
(c) Laplace. (d) Rayleigh.

For multivariate continuous random variables, however, the test was performed
on the normal density for which the mean and covariance were explicitly set to the
following values:

µ = {0.5,−0.2}

Z =
[
2.0 0.3
0.3 0.5

]
.

(D.7)

For each distribution, 10 000 samples were generated and then used to estimate
the original analytic distribution function. For the univariate case, the actual and
estimated probability density were calculated over the range −5 to 5 by stepping
at 0.1 and for multivariate, the same was done over the range (−1, −1) to (1, 1)
by stepping at 0.1. The mean squared error was calculated and has been presented
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Fig. D.2. Multivariate normal density estimation in two dimensions. (a) Estimated.
(b) Actual.

in Table D.1. The graphs of these calculated values are presented in Figure D.1 for
univariate data and Figure D.2 for multivariate data.

In the cases of both discrete and continuous distributions, it is evident that KDE’s
performance is reasonable for generating data points. A small MSE or Chi-squared
score is desirable as this represents a small deviation of artificially generated points
from the actual distribution of the data. Thus, in experiments which require the
estimation of the distribution of data, KDE is a candidate whose efficacy may be
compared with the common methods of assuming a probability density using well
established probability densities.

Appendix E: Introduction to chaos theory: Relevance to activation
function and neural networks

Nonlinear systems abound in nature. Deterministic Chaos is the apparent random-
like complex behaviour arising out of “simple” (typically low dimensional) non-linear
deterministic bounded systems. The flapping of the wings of a butterfly in Kanyaku-
mari can cause a snowstorm in Kashmir – popularly known as the butterfly effect,
is the hallmark of chaos. This metaphor captures the sensitive dependence on initial
conditions exhibited by chaotic complex systems which makes such deterministic sys-
tems unpredictable. Edward Lorenz, in his seminal 1963 paper [91] that introduced
the bizarre yet fascinating world of nonlinear systems, summarized Chaos as – When
the present determines the future, but the approximate present does not approximately
determine the future. Thus, round-off errors in numerical computation and model-
ing of natural systems suffer from the butterfly effect making long term prediction
practically impossible.

Chaos can generically be found in bounded deterministic non-linear systems, espe-
cially found in mathematical models of natural, biological, chemical, social and in
even artificial human-made systems. Fluid flow, heart rate variability, firing of neu-
rons in the brain, weather and climate, stock market, road traffic, social network
dynamics and even decimal expansions of number systems (just a small list, but no
means exhaustive) – all exhibit the tell tale signs of chaos. Chaos theory – the sys-
tematic scientific study of such nonlinear systems is a highly interdisciplinary theory
which incorporates a host of rigorous mathematical/analytical as well as computa-
tional techniques such as recurrence plots, Poincaré maps, self-simiarlity, fractals,
symbolic dynamics, non-linear differential equations (flows) and discrete time maps,
bifurcation diagrams, lyapunov exponents computation, etc. [92–95].
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Fig. E.1. Chaotic Binary Map: (a) First-return map. (b) Second-return map.

The rich and complex behaviour of simple and innocent looking nonlinear dynam-
ical systems includes dense and infinite periodic orbits, quasi-periodic and even an
uncountably infinite of non-periodic or wandering trajectories, strange chaotic and
non-chaotic attractors (sometimes concomitantly), attracting and repelling periodic
orbits, etc.

We first describe a prototypical chaotic system with that displays nearly the full
repertoire of rich and exotic properties of chaos and then highlight the relevance of
chaos in learning, activation functions and neural networks.

E.1 A gentle introduction to chaos via the Binary Map

Arguably, the simplest deterministic system that exhibits chaos is the 1D nonlinear
map known as the Binary Map or T2(x) : [0, 1) 7→ [0, 1) and defined as:

T2(x) = 2x, 0 ≤ x < 1
2
,

= 2x− 1,
1
2
≤ x < 1.

Figure E.1 shows the first-return map (xn+1 vs. xn) and second-return map (xn+2

vs. xn) of the Binary map (also known as Bernoulli Shift Map [92,96]) T2(x). Starting
from an initial value x0 and applying the Binary map iteratively leads to a trajectory
(infinitely long): {T 0

2 (x0) → T 1
2 (x0) → T 2

2 (x0) → T 1
2 (x0) → . . . → Tn2 (x0) . . .} or

{x0 → x1 → x2 → . . . xn → . . .}. If one were to just record whether at every
iteration xi belongs to the left half of the interval [0, 0.5) (record a symbol “0”) or
the right half [0.5, 1) (record a symbol “1”), then one would get an infinitely long
binary sequence10 corresponding to the initial value x0. This sequence is nothing
but the binary expansion of the real number x0 (hence the name Binary map). The
Binary map satisfies all the required properties of chaos (Devaney’s list [93]):

– Bounded, nonlinear deterministic map.
– Countably infinite number of dense periodic orbits. These correspond to the set of

all rational numbers since their binary expansions are either terminating (infinite
terminating zeros) or periodic/eventually periodic (recurring binary expansions).

10 This sequence is called the symbolic seuqence of the trajectory corresponding to x0.
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– Uncountably infinite number of nonperiodic or wandering trajectories. These cor-
respond to the set of all irrational numbers since their binary expansions are
nonrepeating.

– Sensitive dependence on initial value. This can be understood intuitively as fol-
lows. We can approximate any irrational number (a non-periodic trajectory) by
a rational number (a periodic trajectory) within an arbitrarily chosen accuracy
(ε > 0). Thus, a slight change in the initial value leads to a very qualitative
behaviour (as seen in the structure of the trajectory). Sensitive dependence on
initial value can be quantified by lyapunov exponent [92] which is positive for
chaos. For the binary map, the lyapunov exponent is = ln(2).

– Topological transitivity. Given any two non-zero lebesgue measure sets, there
always exists an initial value which when iterated a finite number of times reaches
the second set.

E.2 Fixed points and their stability

For any chaotic nonlinear 1D map, fixed points are defined as those initial values
which satisfy the equation: f(x∗) = x∗. Consider another 1D chaotic map, the logistic
map: xn+1 = 4xn(1 − xn) where 0 ≤ xn ≤ 1, n stands for the iteration number
(Fig. E.2 depicts the sensitive dependence on initial values). All trajectories lie on a
thin manifold – a parabola (see Fig. E.2). Solving for the fixed points for this map,
x∗ = xn+1 = xn, we get x∗ = 0 and x∗ = 3

4 .
We can ask the following question: is the fixed point stable? By stability, what

we mean is the following notion – if we slightly perturb the fixed point, do the
trajectories converge to the fixed point or diverge away. In other words, how does
neighbouring points of the fixed point behave under the map? Do their trajectories
get attracted to the fixed point or repelled. Consequently, stable fixed points are called
attracting points and unstable ones are called repellers. The mathematical condition
for stability [92] is given by: | dfdx |x=x∗ < 1. It can be verified that for the logistic map,
both x∗ = 0 and x∗ = 3

4 are unstable fixed points.
Periodic points – are those initial values which yield periodic trajectories when

iterated on the given map. A point is said to have a period m if fm(x∗) = x∗ and
f i(x∗) 6= x∗,∀i = 1, 2, . . . ,m − 1. For example, a period two point would satisfy
f2(x∗) = x∗ and f(x∗) = x∗. These would be fixed points on the second-return map.
For the Binary map (Fig. E.1b), they lie at the intersection of the map and the line
xn+2 = xn. However, two of these fixed points would correspond to period-0 points
which we have to ignore. The remaining two fixed points correspond to period-2
points. Thus, to find all period-m points, we can find the fixed points of the m-th
return map (discounting all those fixed points which correspond to the divisors of m
since they would be periodic with a lesser period length). Stability criteria are easily
extended to these periodic orbits as well [92].

E.3 Chaos and learning

Artificial Neural Networks (ANN) are only loosely inspired by the brain. The presence
of chaos at various spatiotemporal scales in the human brain is well established by
several experimental studies. This “neuro-chaos” is exhibited by networks of neurons
in the brain [97,98] as well as individual activity seen at the level of a single neuron.
Contrast this with ANNs where individual neurons are intrinsically linear and the
only nonlinearity is at the activation function. This is sufficient to induce chaos at
the level of networks, for e.g. Recurrent Neural Networks are known to exhibit chaos
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Fig. E.2. Logistic map: xn = 4xn−1(1− xn−1). Top: Sensitive dependence on initial values
for two trajectories starting from x0 = 0.12345 (Blue) and x0 = 0.12346 (Red). As it can
be seen, the two trajectories diverge after a few iterations. Bottom: The first return map
for the two trajectories indicating that they lie on a thin manifold (a parabola).

[99]. There has been some early studies of the efficacy of chaos for learning. Sprott
hypothesises that weak chaos allows for exploring a wide range of conditions while
retaining some memory and predictability, which could be beneficial for learning [100].
Too much noise or chaos on the other hand is not good for learning. He specifically
demonstrates that an ANN trained on logistic map time series at the onset of chaos is
more effective when it exhibits weak chaos. He goes to further suggest that it is quite
possible that human volunteer subjects might exhibit higher Lyapunov exponent in
their EEG measurements during their performance of creative activities.

A novel neural network architecture for classification tasks employing 1D chaotic
maps as individual neurons has been recently proposed [101]. Dubbed as ChaosNet,
the authors of this work make use of the topological transitivity property of 1D
chaotic maps known as Generalized Luröth Series (GLS) – the Binary map (described
in E.1) is a specific example of GLS. These GLS neurons form the input layer of
ChaosNet which when stimulated by the input data, produce a chaotic trajectory as
its neural activity. The algorithm then proceeds to learn statistical features of this
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neural code to produce internal representation vectors. Their paper demonstrates the
performance of ChaosNet on classification tasks on publicly available datasets. With
as low as 0.05% of the total data used for training, their method reports accuracies
ranging 73.89% to 98.33% while also claiming to be robust to external noise added
to the weight vectors. The main reason for this success is the property of topological
transitivity and the ability of chaos to abstract learning representations from limited
samples while also being robust to noise. Probably, this is why chaos is found in
abundance in the human brain – that it helps the brain to abstract learning rep-
resentations with very few samples (unlike DNN) and is also very robust to neural
noise and interference.

Activation function is the only nonlinear component of ANNs. They play a very
important role in that they enable approximations to a large class of continuous
functions. Cybenko [21] was one of the first to prove the Universal Approximation
Theorem which states the conditions required for activation functions to achieve
this feat. Linear functions simply do not have the requisite power to achieve this
and hence the need for nonlinear activation function. Chaotic maps are necessarily
nonlinear and ideally suited for approximations. In their ChaosNet paper, the authors
demonstrate that the nonlinear chaotic neuron (1D GLS map) satisfies a version of
the Universal Approximation Theorem. Unlike neurons in ANNs, the GLS neuron
does not need a separate activation function and this is much more closer to how
a neuron functions in the brain. We have explored the chaotic dynamics of SBAF.
Additionally, future research could explore the rich properties of chaotic nonlinear
functions for designing novel activation functions.

Appendix F: Interplay between activation and loss functions

This is a note on Sigmoid activation and cross-entropy loss. Suppose that y∗ is a
latent, continuous random variable. In the case of logistic regression, (leading to
binary cross entropy), we assume that y ∗ f(x) + e where e ∼ logit(mean = 0) pdf.
We can see that sigmoid is the CDF of logit distribution (or conversely, sigmoid is a
valid CDF, and its derivate is the logit distribution), where f(x) is the mean. Define
y = I(y∗ > 0). Then,

p(y = 1) = p(y∗ > 0)
= 1− p(f(x) + e < 0)
= 1− cdflogit(−f(x))
= 1− σ(−f(x)).

But 1− σ(−x) = σ(x) due to symmetry. Therefore,

p(y = 1) = σ(f(x)).

The negative log-likelihood under the above generative model results in the binary
cross entropy. We have followed the same constructive approach to come up with a loss
function for binary quantile regression. There, the error distribution is asymmetric
Laplace distribution.
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Appendix G: A mind map of key ideas presented in the paper
(Fig. G.1)

Fig. G.1. The flowchart is a visual description of integration of several ideas leading to
novel activation functions and subsequent use in habitability classification of exoplanets.
(For a better readability please refer to the online version).

Appendix H: Epilogue

H.1 Nobel prize

Nobel prize is a set of international awards presented by Swedish and Norwegian insti-
tutions to several laureates in different categories every year. The award is bestowed
in various disciplines vis-a-vis Physics, Chemistry, Literature, Peace and Medicine in
order to give recognition to scientific, academic and cultural advances in respective
fields. Each year laureates receive a gold medal, a diploma and amount of money
based on the donation received by the Nobel Foundation. By large, the prize is con-
sidered as the most reputed award in the field of Science, Literature and Physiology.
Interestingly, Nobel prize is Physics for the year 2019 was awarded to two Swiss
astronomers, Michel Mayor and Didier Queloz, for their outstanding discovery of
an exoplanet (named 51-Pegasi-b) orbiting around Solar-like star. Nobel prize was
awarded to them with prize-motivation cited as: “For the discovery of an exoplanet
orbiting a solar-type star” The award was shared by Canadan-American Astrophysi-
cist, James Peebles for laying theoretical foundations in Cosmology, and transforming
the cosmic world into a precision science. The next section outlines the accomplish-
ment of two Nobel Laureates that has granted benefits in the field of Astronomy and
Astrophysics.

Michel Mayor Michel is a retired Professor from University of Geneva in the
department of Astronomy. He received MS in Physics and PhD in Astronomy and
had worked at European Southern Observatory and Observatory at Geneva to work
closely on extra-solar planets and understand their statistical properties. He had
spent a good amount of time in building photoelectric-based spectrometers for mea-
suring radial velocity of stellar objects. Apart from the Nobel Prize award which he
received for the discovery of exoplanet 52 Pegasi b, Michel Mayor is a recipient of
the Swiss Marcel Benoist Prize, the Balzan Prize, the Albert Einstein Medal, BBVA
Foundation Frontiers of Knowledge Award of Basic Sciences, the Gold Medal of the
Royal Astronomical Society and the Wolf Prize in Physics (Fig. H.1).
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Fig. H.1. (a) Michel Mayor: Nobel Prize in 2019. (b) Didier Patrick Queloz: Nobel Prize
in 2019.

Didier Patrick Queloz Professor Didier Queloz is a Professor at University at
Cambridge, also a fellow of Trinity College, Cambridge and Professor at University
of Geneva. He completed his M.Sc. degree in Physics from University of Geneva
and obtained his PhD under the supervision of Dr Michel Mayor. Michel had been
working on improving the measurements of radial velocity of stellar objects and had
developed spectrometer, COREAL, to measure radial velocity with large accuracy.
Michel and Didier later developed ELODIE, a refined spectrometer with a capacity
to measure radial velocity of astronomical objects to a very large degree of accuracy.

51 Pegasi b is the first exoplanet discovered in the 1995 by Mayor and Didier
using ELODIE spectrometer. Both the Swiss Astronomers confirmed the presence of
extra-solar planet that orbits sun-like star at about 50 light years away from Earth.
51 Pegasi b has orbital period of 4 days with surface temperature of 1000 ◦C and is
50% larger in size than Jupiter.

H.2 Exoplanet detection methods and the most important exoplanet search
missions

Time and again, there were missions launched across different parts of the world for
discovering exoplanets. Space-based missions are large-scaled projects initiated by
different agencies and universities led by a group of research scientists for placing
large, complex, powerful telescope in space to know more about mysteries of stellar
objects. These telescopes are launched with the help of a special launch vehicle or
rocket. The space based missions include COROT, Kepler, K2 and TESS that have
captured unobstructed image of the entire sky providing a large ground for studying
stellar objects. Alternatively, there are many ground-based observatories equipped
with telescope to make observations in different sections of sky at night. Few ground-
based missions were MEarth Project, SuperWASP, KELT, and HATNet. Scientists
keep a watchful eye on the objects and events of the universe with their telescope.
Though there had been decent number of techniques available for detecting exoplan-
ets, Pulsar timing, Transit method and Radial velocity method are predominantly
used in these missions. Other detection methods contributing to other critical dis-
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coveries are Astrometry, Microlensing and Direct Imaging. Some of these methods
are described below.

Pulsar Timing Wolszczan in 1994, devised a method of exoplanet detection
that uses periodic variation in pulse signals received from a pulsar to detect planet
orbiting around it. A pulsar is a “dead” star, that gets formed after its parent star
explodes as supernova. Even the planets that are orbiting pulsars are formed due
the same powerful stellar explosion indicative of the fact that formation of planet is
not a rare phenomenon. The limitation here is, only those planets that orbit pulsars
can be detected by this method; and pulsars are rarely seen as against the main
sequence stars. Moreover, habitability of such planets is unlikely since pulsars emit
high intensity radiations and chances of survival of life form on planets that orbits
radiations-emitting stars are negligible. As a result the research in this direction
becomes feeble.

Transit Photometric Method Transit method utilizes a phenomenon when
an exoplanet blocks or obstruct a part of the light being received from its host star.
When an exoplanet is passing across its star, the event in called transit. The transiting
object blocks some part of light reaching an observer on Earth. If dimming of light
is observed at regular time period, then it is believed to be due to an exoplanet
orbiting around its star. The transit photometric method is useful in finding planets
that revolves in close orbit of its star. The method also enables the measurement
of exoplanet diameter, though computing mass is not possible with this technique.
Furthermore, exoplanet mass is computed using Radial Velocity method described
next. Hence the two methods complement each other in characterizing exoplanets
and enabling astronomers in deriving more features from already-computed ones.

Radial Velocity Method Radial velocity method (Doppler Spectroscopy) is a
successfully utilized method for detecting exoplanet that relies on the fact that star is
not completely stationary but moves in a small circle along with its planet when the
planet is orbiting around it. The effect is known as Doppler effect. These movememts,
even though small in degree, can be detected by highly powerful spectrographs used
in telescopes for detecting exoplanets. Spectrographs monitors a star’s spectrum and
detects a spectral shift toward redder wavelength when star is moving away from
the observer and toward bluer wavelength when it is moving in the direction of
the observer. If these shifts appear at regular interval, one can certainly feel the
presence of a planet tugging its star while orbiting around. This method of detecting
planets became so revolutionary that scientists began developing highly powerful
spectrographs which are capable of detecting light movements of star with higher
accuracies (Fig. H.2).

H.2.1 Space based missions

The section brings-up few most popular and successful space missions conducted
exclusively for exoplanet search and their characterization presented in reverse
chronological order.

CHEOPS – Characterizing Exoplanets Satellite (December, 2019–
ongoing) CHEOPS is a space-based mission that is first of its kind, launched with
an intention to characterize and identify features of already discovered exoplanets.
The project is an initiative of European Space Agency. The agenda is to obtain
finer details of the exoplanets like diameter, mass and use these values to derive
new parameter like density. Moreover, CHOEPS closely examine the surface of the
planets to know whether they are rocky or in gaseous state and explore similar char-
acteristics in order to facilitate astronomers in evaluating life-harbouring potency of
planets. Though, images captured by the mission telescope are slightly blurred and



2730 The European Physical Journal Special Topics

Fig. H.2. Exoplanet Detection Methods Visualized, Video is available at [102]. Credits:
PHL@UPR Arecibo.

Fig. H.3. TESS Spacecraft: Loopable animation of TESS spacecraft. Credit: NASA’s God-
dard Space Flight Center/CI Lab – Animation video is available at TESS Spacecraft Ani-
mations, by Walt Feimer, Released on January 8, 2018, https://svs.gsfc.nasa.gov/20272
Credits: PHL@UPR Arecibo.

not very clear, scientists believe that this gives room to capture finer photometric
precision in the images when telescope spots a transiting planet.

Transiting Exoplanet Survey Satellite (TESS) (April, 2018–ongoing) is
launched by NASA in April 2018 to open possibilities for studying mass, size, radius
and orbit of planets though it began its science operations from July 2018 in space.
TESS is led by the Massachusetts Institute of Technology and was originally planned
to complete its mission in 2 years. TESS is furnished with 4 wide-angle telescope with
CCD cameras that uses transit photometry for detecting exoplanet. The cost of TESS
project is US$200 million with an additional cost of US$87 million for launching the
spacecraft. The image data collected by telescope are transmitted to Earth in every 2
weeks along with the transient images with exposure time of nearly 2 h for exploring

https://svs.gsfc.nasa.gov/20272
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unexpected phenomenon. HD 21749c is the first Earth-like exoplanet captured by
TESS telescope which has 89% Earth diameter. Another tiny exoplanet, L 98-59b,
orbiting a close star is found to have mass between Mars and Earth. TESS, being an
all-sky survey, is believed to discover more than 20 000 exoplanets and few of them
will be Earth-sized orbiting in the habitable zone. Till date, TESS has successfully
discovered 1785 extra-solar planets, 45 are confirmed to be exoplanets.

Kepler (March, 2009–May, 2013) Nasa’s Kepler mission was launched in
March 2009 by sending Kepler spacecraft in search of Earth-like exoplanets orbiting
around Sun-like star in the Universe. Kepler telescope has spent almost 9 years in
space finding more and more exoplanets that are similar to Earth. The mission used
transit photometry technique by searching for dips in brightness when the planet
passes across its star. Kepler made its first 5 discoveries as Kepler-4b, Kepler-5b,
Kepler-6b, Kepler-7b and Kepler-8b which were identified as hot Jupiters mostly in
gaseous state. Soon after, Kepler-10b was discovered as first rocky planet, orbiting
too close to its star and was named “Lava world” due to presence of molten rock on
its surface. The first planet which was found in the habitable zone of its star was
Kepler-22b. The planet is twice the size of Earth and orbits at perfect distance from
star making its way to become suitable candidate for sustaining life on its surface.
Subsequently, discovery of Kepler-62e and Kepler-62f brought new planets lying in
the habitable zone and were recognized as “Super Earths” because their masses were
higher than Earth’s. Super-Earths are planets that are larger than Earth and smaller
than Uranus and Neptune in size and mass. Another interesting discovery, Kepler-
186f, brings to light the first planet which is similar in size with Earth, orbiting a
red dwarf star and lies in its habitable zone. The star is 580 light years away from
Earth.

K2 (May, 2016–November, 2018) It was NASA’s subsequent mission that
initiated after Kepler spacecraft faced technical malfunction in space in 2013. Kepler
paused its operation in May 2013 when second of its 4 reaction wheels stopped
working. A decision was made then to resume the mission after making a small fix in
the functioning of Kepler’s telescope. And within few months the mission began its
exploration with a new name “K2”. NASA’s K2 mission used Kepler’s telescope and
discovered as many as 300 new exoplanets in its extended working. In December 2016,
K2 discovered Trappist-1, a planetary system that has many Earth-sized planets.
The most interesting outcome of the exploration revealed that the Universe has
more number of Earth-like planets than Jupiter-like gas giants which gives out a
ray of hope for finding life-form on planets outside solar system. The mission not
just explored the presence of exoplanets but also brought into light many bright
stars, galaxies, supernovae and asterseismology for researchers to conduct research
in different dimensions. The mission got over in October 2018, after engineers found
the spacecraft was running out of fuel, and later NASA officially announced the
decommissioning of their space observatory from service.

CoRoT Convention, Rotation and Planetary Transit (CoRoT) Decem-
ber, 2006–June, 2014 was the first mission led by CNES in association with French
laboratories and several International partners in 2006 for exploring stars and extra-
solar planets. The internal structure of stars was also studied in the mission. This
was made possible by closely examining the change in brightness of star, a technique
named stellar seismology. Additionally, CoRoT used transit photometry for detect-
ing exoplanets and 34 exoplanets were found in this mission, many of these were
“Super-Earths”. An interesting discovery of CoRoT-7b, a rocky planet which is 1.68
times Earth’s size and 4.8 times Earth’s mass orbiting its star at about 489 light
years from Earth gained a lot of attention from scientist community

NN-EXPLORE, NASA-NSF Exoplanet Observational Research There
had been plenty of space-based missions though, that have unveiled thousands of
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Fig. H.4. Hubble finds more evidence of water vapor plumes on Europa. Credits: NASA’s
Goddard Space Flight Center, Animation video is available at Europa Water Vapor Plumes
– More Hubble Evidence, Video Released on April 13, 2017, https://svs.gsfc.nasa.gov/
12585.

exoplanet and stars but certainly, there would be many more undiscovered exoplan-
ets in the universe to be captured in up-coming missions. Scientists and astronomers
have realized a need to investigate the already available data on exoplanets. NN-
EXPLORE has taken an initiative to affirm and assess the confirmed exoplanets and
to perform high-level analysis of data on their scientific parameters. A partnership
was established in 2017 between NASA and National Science Foundation for conduct-
ing ground-based radial velocity survey to pursue on observations made by Kepler,
K2 and TESS missions. The work was conducted in two stages. In the initial stage,
high precision Doppler Spectrometer was developed at the National Optical Astron-
omy Observatory (NOAO), and deployed at the 3.5-m Wisconsin, Indiana, Yale,
and NOAO (WIYN) telescope. Alongside, a Guest Observer program, exclusively for
exoplanet-targeted research scientists began to operate, in which the instrument was
made available to Guest observers in time-sharing mode. In the second ongoing-stage,
a database management system is build and the data is being stored for the scientists
and research community for further explorations.

NASA’s Hubble Telescope Hubble is a space telescope launched in the Earth’s
low orbit in 1990 that uncovered interesting aspects of plenty of exoplanets. During
its mission, it explored characteristics of HD209458 b, and observed marks of sodium
gas in its atmosphere. Likewise, Hubble also detected methane in the atmosphere
of HD 189755 b, an exoplanet discovered sometime back. In a different perspective,
Hubble created a history in detecting first organic molecule in the atmosphere of
a planet that orbits outside our solar system. Discoveries led by Hubble indicated
chemical impressions of life in its spectroscopic survey of exoplanet’s atmosphere
when it found the hydrogen-rich atmosphere, and the presence of other gases like
CO2, methane and oxygen (Fig. H.4).

H.2.2 Ground based observatories and their telescopes

Specific research teams have been investing time and money in constructing astro-
nomical observatories for observing sky in the night. These observatories are build
at very high altitudes. Here are details of location and functioning of a few popular

https://svs.gsfc.nasa.gov/12585
https://svs.gsfc.nasa.gov/12585
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Fig. H.5. The Leonhard Euler Telescope in its dome at La Silla Observatory. Credit:
ESO/H. Zodet.

observatories built by different research groups for exclusive study of exoplanets with
regards to their potential to become habitable.

In recent past, countries like China, Japan and Korea took initiative to dive
into the exploration of extra-solar planets and their characteristics. Scientists of
these countries teamed-up and established East-Asian Planet Search Network, (EAP-
SNET), to gather more accurate detection and measurements of exoplanets (Fig. H.3)
using skilled instrument and technologies. They have been successful in detecting HD
119445 and scientists are optimistic about bringing more exoplanet characteristics
into light. Similar ground-based missions at different Observatories in various parts
of the world have gained momentum. Back in 1998, famous and reputed Geneva
Observatory had built and deployed a Swiss EULER Telescope that internally use
CORALIE spectrograph for detecting exoplanets. Currently, the Observatory hosted
Geneva Extrasolar Planet Search Program in collaboration with many more organiza-
tions across the world to expedite exoplanet-science. The program was led by Michel
Mayor and his team who utilized sensitive instruments like CORALIE and ELODIE
for exoplanet detection. This resulted in discovery of plenty of exciting exoplanets
including 51 Pegasi-b.

Similar initiatives at La Silla Observatory in Chile had discovered more than 130
exoplanet by using a powerful and sensitive planet-detecting spectrograph known
as High Accuracy Radial Velocity Planet Searcher (HARPS). The spectrograph was
established in 2004 and used radial velocity method to detect exoplanets. HARPS
was used by Michel Mayor and Didier for characterisation of the Gliese 581 planetary
system. La Silla Observatory also hosts a high-precision reflecting telescope, Leonhard
Euler Telescope, which was built by Geneva Observatory in 1998. It uses CORALIE
spectrograph to captures Dopplers effect of star for detecting planet. Euler telescope
was used in Southern Sky extrasolar Planet search Programme for detecting multiple
exoplanets (Fig. H.5).

Magellan Planet Search Program at Las Campanas Observatory, Chile is
a ground-based mission started in 2002 for finding exoplanets that uses Magellan II
“Clay” telescope. In a span of few years, the program had announced the discoveries
of HD 48265 b, HD 86226 b, HD 129445 b, HD 143361 b and many more extrasolar
planets that are orbiting their stars.

Wide Angle Search for Planets, WASP is an Ultra-wide angle search pro-
gram for exoplanets started by international consortium of 6 universities across
the globe. The search program uses two mighty robotic observatories that covers
millions of stars and planets in northern and southern hemisphere. The mission
named SuperWASP-North is at Roque de los Muchachos Observatory that covers
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northern hemisphere and SuperWASP-South covers southern hemisphere from the
South African Astronomical Observatory, Sutherland. The Observatories have been
using 8 wide-angle cameras to observe the entire sky. The researchers of SuperWASP
have discovered one of the hottest Jupiter-sized planet, WASP-178b in August 2019.

H.2.3 Future missions and their special telescopes in development stage

The popular space and ground based missions like Kepler, K2, TESS and many more,
have confirmed as many as 4152 exoplanets beyond our solar system. Many of these
are orbiting in the habitable zone and could sustain liquid water on their surface
hence, the challenge for astronomers swiftly shifts from finding exoplanets to seeking
signs of life on planets.

James Webb Space Telescope (JWST or “Webb”) European Space Agency
and Canadian Space Agency supported and contributed in making of a special tele-
scope, JWST that is planned to be launched in Earth’s orbit as successor of the
popular telescope, Hubble. As already mentioned, Hubble has been orbiting in space
since 1990 and has contributed in various important exoplanets discoveries. The
scheduled launch of JWST is March 2021 but there could be delay because of the
impact of coronavirus pandemic. It is believed that JWST is highly complex, large
and accurate telescope that will expand and explore discoveries made by Hubble with
greater accuracy and improved sensitivity.

Planetary Transits and Oscillations of stars (PLATO) Another initiative
of European Space Agency is the development of spacecraft with an aim to search
for unexplored exoplanets that have been orbiting around millions of stars, many of
those could be red dwarfs, yellow dwarfs and sub-giants stars. Not only detection,
their bulk properties like mass, radius, architectures, their evolutionary process and
atmospheric conditions will be examined as a part of mission so that scientists can get
insights in determining their habitability potential. The telescope is equipped with
26 special cameras, out of those, 24 are “normal” cameras and 2 are “fast” cameras
for observation of bright stars, arranged in a way to enable continuous observation
of a region of sky. ESA is planning to launch the telescope in 2026.

Wide Field Infrared Survey Telescope, WFIRST an infrared telescope is in
its development stage, proposed to be launched in 2025. Telescope is equipped with
extra capabilities to capture sharp images in comparison to those obtained from
Hubble. WFIRST instrument has two major components. The primary component
is Wide Field instrument, to capture region of sky 100 times larger than Hubble
infrared instrument. The method of Gravitational microlensing will be used to sur-
vey inner Milky Way for exoplanet search. The second component is Coronagraph
instrument for inducing sharpness and contrast in images of exoplanets to be used
for spectroscopy (Fig. H.6).

A great deal of reading material and books about exoplanets and mysteries of the
universe are available like “Exoplanets” by Sara Seager, “The History of Astronomy:
A Very Short Introduction” by Michael Hoskin, “Five Billion Years of Solitude: The
Search for Life Among the Stars” by Lee Billings, “Mirror Earth: The Search for Our
Planet’s Twin” by Michael D. Lemonick, “Just Right: Searching for the Goldilocks
Planet” by Curtis Manley, “The Edge of Physics: A Journey to Earth’s Extremes to
Unlock the Secrets of the Universe” by Anil Ananthaswamy are few popularly read
books on exoplanets.
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Fig. H.6. WFIRST Coronagraph Animation-Animation illustrating how a planet can dis-
appear in a star’s bright light, and how a coronagraph can reveal it. Animation video is
available at WFIRST Coronagraph Animation, by Walt Feimer, Released on September 20,
2016, https://svs.gsfc.nasa.gov/20243. Animation Credits – Walt Feimer (HTSI): Lead
Animator, Scott Wiessinger (USRA): Producer, Neil Gehrels (NASA/GSFC): Scientist.
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30. L.E. Strigari, M. Barnabè, P.J. Marshall, R.D. Blandford, Mon. Not. R. Astron. Soc.

423, 1856 (2012)
31. http://kepler.nasa.gov/

32. N.M. Batalha, Proc. Natl. Acad. Sci. 111, 12647 (2014)
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