
Submitted 11 October 2018
Accepted 21 December 2018
Published 14 January 2019

Corresponding author
Nithin Nagaraj, nithin@nias.res.in,
nithin.nagaraj@gmail.com

Academic editor
Arun Somani

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj-cs.171

Copyright
2019 Nagaraj

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Using cantor sets for error detection
Nithin Nagaraj
Consciousness Studies Programme, National Institute of Advanced Studies, Bengaluru, India

ABSTRACT
Error detection is a fundamental need inmost computer networks and communication
systems in order to combat the effect of noise. Error detection techniques have also
been incorporated with lossless data compression algorithms for transmission across
communication networks. In this paper, we propose to incorporate a novel error
detection scheme into a Shannon optimal lossless data compression algorithmknown as
Generalized Luröth Series (GLS) coding. GLS-coding is a generalization of the popular
Arithmetic Coding which is an integral part of the JPEG2000 standard for still image
compression. GLS-coding encodes the input message as a symbolic sequence on an
appropriate 1D chaotic mapGeneralized Luröth Series (GLS) and the compressed file is
obtained as the initial value by iterating backwards on themap.However, in the presence
of noise, even small errors in the compressed file leads to catastrophic decoding errors
owing to sensitive dependence on initial values, the hallmark of deterministic chaos.
In this paper, we first show that repetition codes, the oldest and the most basic error
correction and detection codes in literature, actually lie on a Cantor set with a fractal
dimension of 1

n , which is also the rate of the code. Inspired by this, we incorporate error
detection capability to GLS-coding by ensuring that the compressed file (initial value
on the chaotic map) lies on a Cantor set. Even a 1-bit error in the initial value will throw
it outside the Cantor set, which can be detected while decoding. The rate of the code
can be adjusted by the fractal dimension of the Cantor set, thereby controlling the error
detection performance.

Subjects Autonomous Systems, Computer Networks and Communications, Data Science, Mobile
and Ubiquitous Computing, Software Engineering
Keywords Error detection, Error control coding, Cantor sets, Shannon entropy, Arithmetic
coding, Repetition codes, GLS-coding, Chaos, Lossless data compression

INTRODUCTION
Computers and communication systems invariably have to deal with the ill effects of
noise, which can lead to errors in computation and information processing. In a landmark
paper published in 1950, Richard Hamming addressed this problem by introducing
mathematical techniques for error detection and correction (Hamming, 1950). Since then,
coding theory has burgeoned to be a field of its own right, boasting of important research
and developments in the art and science of error detection and correction (Lin & Costello,
1983). Error detection/correction techniques have therefore been a fundamental part of
most computing systems and communication networks, typically applied on the input data
after data compression (lossy/lossless) and encryption (Bose, 2008).

Shannon’s separation theorem (Shannon, 1959) states that under certain assumptions,
data compression (source coding) and error protection (channel coding) can be performed

How to cite this article Nagaraj N. 2019. Using cantor sets for error detection. PeerJ Comput. Sci. 5:e171 http://doi.org/10.7717/peerj-
cs.171

https://peerj.com
mailto:nithin@nias.res.in
mailto:nithin.nagaraj@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.171
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.171
http://doi.org/10.7717/peerj-cs.171


1Progressive transmission refers to the
successive approximation property of the
bitstream where successive bits transmitted
across the channel improve the fidelity of
reconstruction at the decoder.

separately and independently (sequentially) while still maintaining optimality. However,
in several practical scenarios, these assumptions are not met and hence there is a need
for joint source channel coding. In image/video browsing and web-based applications, it
is highly desirable to have the property of progressive transmission1 (Said & Pearlman,
1996). However, even the slightest error can wreak havoc on a progressive bitstream.Hence,
there is a need for incorporating error detection when decoding a compressed progressive
bitstream.

Lossless data compression refers to the removal of redundancy in the data—a pre-
requisite step in most storage and communication systems before the application of an
encryption algorithm and error control coding (for error detection/correction). Consider
an i.i.d. binary message source S which emits ‘0’ with probability p (0< p< 1). A
binary message M of length N from such a source needs to be losslessly compressed.
Shannon (Shannon, 1948) showed that such a message can at best be losslessly compressed
to≥H (S) ·N bits on an average, whereH (S) is the Shannon’s entropy of the source. For an
individual binary messageM from such an i.i.d. source, we can compute H (·) as follows:

H (M )=−plog2(p)− (1−p)log2(1−p) bits/symbol, (1)

where p= Number of zeros in M
N . There are several lossless compression algorithms in literature

- Shannon-Fano coding, Huffman coding, Arithmetic coding, Lempel–Ziv coding and
others (Cover & Thomas, 2006; Sayood, 2000). Among these, Arithmetic coding (Rissanen
& Langdon, 1979) achieves the Shannon entropy limit for increasing message lengths.
Arithmetic coding is used extensively in several practical applications owing to its speed,
efficiency and progressive bitstream property. In fact, it is used in JPEG2000 (Taubman
& Marcellin, 2002), the international standard for still image compression, replacing the
popular Huffman coding which was used in the earlier JPEG (Wallace, 1992) standard.

In 2009 (Nagaraj, Vaidya & Bhat, 2009), it was shown that Arithmetic coding is closely
related to a 1D non-linear chaotic dynamical system known as Generalized Luröth Series
(GLS). Specifically, it was shown that lossless compression or encoding of the binarymessage
M can be performed as follows. First, the message M is treated as a symbolic sequence
on an appropriately chosen chaotic GLS. The initial value on the GLS corresponding to
this symbolic sequence is computed by iterating backwards on the map. This initial value
(written in binary) serves as the compressed file. For decompression, we start with this
initial value (the compressed file) and iterate forwards on the (same) GLS, and record
the symbolic sequence. This symbolic sequence is the decoded M . Such a simple lossless
compression algorithm (known as GLS-coding) was proved to achieve Shannon’s entropy
limit (Nagaraj, Vaidya & Bhat, 2009). Arithmetic coding turns out to be a special case of
GLS-coding (Nagaraj, Vaidya & Bhat, 2009).

Unfortunately, it turns out that GLS-coding (hence also arithmetic coding), having the
progressive bitstream property, is very sensitive to errors. Even a single bit error in the
compressed file can lead to catastrophic decoding errors. This has been well documented
in the data compression literature (Boyd et al., 1997) and researchers have since been trying
to enhance Arithmetic coding with error detection and correction properties (Anand,
Ramchandran & Kozintsev, 2001; Pettijohn, Hoffman & Sayood, 2001). In this work, our

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 2/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.171


2One could alternately use the skew-
binary map. There are eight possible
modes of GLS in this case and all are
equivalent in terms of compression ratio
performance (Nagaraj, Vaidya & Bhat,
2009).

aim is to incorporate error detection into GLS-coding by using Cantor set while not
sacrificing much on the lossless compression ratio performance of GLS-coding. As we shall
demonstrate, Cantor set has desirable properties that enable efficient error detection with
GLS-decoding.

The paper is organized as follows. In ‘GLS-Coding and Decoding’, we briefly describe
GLS-coding of a binary message and its sensitivity to errors. In ‘Error Detection Using
Cantor Set’, we explore Cantor set and describe its wonderful properties that enable error
detection. Particularly, it is shown that Repetition codes belong to a Cantor set. Inspired by
this, we incorporate error detection into GLS-coding using a Cantor set in ‘Incorporating
Error Detection into GLS-Coding Using a Cantor Set’ and show simulation results of the
proposed method. We conclude with open challenging problems in ‘Conclusions and
Future Work’.

GLS-CODING AND DECODING
In this section, we shall briefly describe GLS-coding first proposed by Nagaraj, Vaidya &
Bhat (2009). We are given a messageM , of length L, from a binary i.i.d. source S. Our aim
is to losslessly compress M . To this end, we first determine the probability of zeros in M ,
denoted by p. We then construct the GLS map Tp as follows:

xn+1=Tp(xn)=


xn
p
, if 0≤ xn< p,

1−xn
1−p

, if p≤ xn< 1.

The GLS-map, also known as the skew-tent map2, Tp, has two intervals: [0,p) and [p,1)
which are tagged with the symbols ‘0’ and ‘1’ respectively. Starting with any initial value
x0 ∈ [0,1), the above map Tp can be applied iteratively to yield the real-valued time series
{xi}. The symbolic sequence of this time series, denoted by {Si}, is simply obtained by:

Si=

{
0, if 0≤ xi< p,
1, if p≤ xi< 1.

Given the symbolic sequence {Si}, the inverse of Tp is given by:

T−1p (yj)=

{
pyj, if Sj = 0,
1−yj(1−p), if Sj = 1,

For GLS-coding, we begin by treating the givenmessageM as a symbolic sequence {Si}i=L−1i=0
of length L on the GLS Tp. The goal is to obtain the initial value x0 ∈ [0,1) which when
iterated forwards on Tp produces the symbolic sequence {Si} (= message M ). To obtain
x0, we begin by initializing START0= 0.0 and END0= 1.0. We then determine the inverse
images of START0 and END0 by iterating backwards on Tp, by using T−1p and starting
with the last symbol SL−1. At the end of the first back-iteration, we obtain START1 and
END1. We determine the inverse images of START1 and END1 (given SL−2) to determine
the new interval [START2,END2). This is repeated L times to yield the final interval
[STARTL−1,ENDL−1). All points within this final interval have the same symbolic sequence

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 3/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.171


3The number of bits needed to store the
compressed file x0 approaches the entropy
H asymptotically as the length of the
message approaches∞.

4Arithmetic code turns out to be using the
skewed-binary map instead of the skewed-
tent map.

Figure 1. GLS-coding: An example. For the message M = 0010110100 (L = 10, p = 0.6), the above
figure shows the backward-iteration from 00 to 100 on the GLS T0.6. With [START0,END0) = [0.0,1.0)
and iterating backwards, we obtain [START1,END1) = [0.0,0.6), [START2,END2) = [0.0,0.36),
[START3,END3) = [0.8560,1.0) and so on. In this figure, when we go from the symbols 00 to 100, we
go from [START2,END2) = [0.0,0.36) to [START3,END3) = [0.8560,1.0) since the symbolic sequence
at this iteration is 1. This process is repeated until we have a final interval [STARTL−1,ENDL−1) for the
entire M.

Given the symbolic sequence {Si}, the inverse of Tp is given by:

T−1
p (y j) =

{
py j, if S j = 0,
1− y j(1− p), if S j = 1,

For GLS-coding, we begin by treating the given message M as a symbolic sequence {Si}i=L−1
i=0 of length73

L on the GLS Tp. The goal is to obtain the initial value x0 ∈ [0,1) which when iterated forwards on Tp74

produces the symbolic sequence {Si} (= message M). To obtain x0, we begin by initializing START0 = 0.075

and END0 = 1.0. We then determine the inverse images of START0 and END0 by iterating backwards on76

Tp, by using T−1
p and starting with the last symbol SL−1. At the end of the first back-iteration, we obtain77

START1 and END1. We determine the inverse images of START1 and END1 (given SL−2) to determine the78

new interval [START2,END2). This is repeated L times to yield the final interval [STARTL−1,ENDL−1).79

All points within this final interval have the same symbolic sequence (= M = {Si}). We take the mid-point80

x0 =
STARTL−1+ENDL−1

2 as the compressed file. Since x0 is a real number (between 0 and 1), we write81

its binary representation to the file. The number of bits needed to represent the compressed file x0 is82

⌈− log2(ENDL−1 −STARTL−1)⌉ bits. This is proved to be Shannon optimal3 in (Nagaraj et al., 2009) and83

Arithmetic coding is shown to be a special case of GLS-coding4.84

GLS-decoding is straightforward. At the decoder, given the value of p, we construct the GLS (skew-85

tent map) Tp as described earlier. Given that we know x0 (the compressed file ), all that we need to do is86

iterate forwards on the map Tp for L (= length of message M) iterations and output the symbolic sequence87

{Si}. This is the decoded message and in the absence of any noise, this is exactly the same as M which88

was input to the encoder.89

As an example, consider M = 0010110100 (L = 10). In this case, p = 6
10 = 0.6 and T0.6 is shown in90

Fig. 1. With START0 = 0.0 and END0 = 1.0, we obtain [START1,END1)= [0.0,0.6), [START2,END2)=91

[0.0,0.36), [START3,END3) = [0.8560,1.0) and so on.92

2.1 Effect of single-bit error on GLS-decoding: Sensitive dependence on initial value of93

the map94

Thus far, we have discussed lossless coding in the absence of any kind of noise. However, in practical95

applications, noise is unavoidable. If the data is in a compressed form, then it is quite likely that the96

3The number of bits needed to store the compressed file x0 approaches the entropy H asymptotically as the length of the message
approaches ∞.

4Arithmetic code turns out to be using the skewed-binary map instead of the skewed-tent map.

3/10

PeerJ Comput. Sci. reviewing PDF | (CS-2018:10:31818:1:1:NEW 15 Dec 2018)

Manuscript to be reviewedComputer Science

Figure 1 GLS-coding: an example. For the messageM = 0010110100 (L = 10,p=0 .6), the above
figure shows the backward-iteration from 00 to 100 on the GLS T0.6. With [START0,END0) = [0.0,1.0)
and iterating backwards, we obtain [START1,END1) = [0.0,0.6), [START2,END2) = [0.0,0.36),
[START3,END3) = [0.8560,1.0) and so on. In this figure, when we go from the symbols 00 to 100, we go
from [START2,END2)= [0.0,0.36) to [START3,END3)= [0.8560,1.0) since the symbolic sequence at this
iteration is 1. This process is repeated until we have a final interval [STARTL−1,ENDL−1) for the entireM .

Full-size DOI: 10.7717/peerjcs.171/fig-1

(=M ={Si}). We take the mid-point x0=
STARTL−1+ENDL−1

2 as the compressed file. Since x0
is a real number (between 0 and 1), wewrite its binary representation to the file. The number
of bits needed to represent the compressed file x0 is d−log2(ENDL−1−STARTL−1)e bits.
This is proved to be Shannon optimal3 in Nagaraj, Vaidya & Bhat (2009) and Arithmetic
coding is shown to be a special case of GLS-coding4.

GLS-decoding is straightforward. At the decoder, given the value of p, we construct the
GLS (skew-tent map) Tp as described earlier. Given that we know x0 (the compressed file),
all that we need to do is iterate forwards on the map Tp for L (= length of message M )
iterations and output the symbolic sequence {Si}. This is the decoded message and in the
absence of any noise, this is exactly the same asM which was input to the encoder.

As an example, consider M = 0010110100 (L= 10). In this case, p= 6
10 = 0.6 and T0.6

is shown in Fig. 1. With START0 = 0.0 and END0 = 1.0, we obtain [START1,END1)=
[0.0,0.6), [START2,END2)= [0.0,0.36), [START3,END3)= [0.8560,1.0) and so on.

Effect of single-bit error on GLS-decoding: sensitive dependence on
initial value of the map
Thus far, we have discussed lossless coding in the absence of any kind of noise. However,
in practical applications, noise is unavoidable. If the data is in a compressed form, then it
is quite likely that the decoder would be unable to decode or would decode incorrectly.
Even detecting whether an error has occurred helps in several communication protocols
since a repeat request could be initiated.

In GLS-coding, the compressed file is the initial value of the symbolic sequence (the
message M ) on the appropriate GLS. Since GLS is a chaotic map, it exhibits sensitive
dependence on initial values, the hallmark of deterministic chaos (Alligood, Sauer & Yorke,
1996). A small perturbation in the initial value will result in a symbolic sequence which

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 4/13

https://peerj.com
https://doi.org/10.7717/peerjcs.171/fig-1
http://dx.doi.org/10.7717/peerj-cs.171


Figure 2. Effect of noise on GLS-coding: (A) The first bit of the compressed file is flipped. The
decoded message is very different from the actual intended message. (B) The middle bit (bit no. 3610) of
the compressed file is flipped. The first 5000 bits are decoded without error and the remaining 5000 bits
show lots of decoding error. (p = 0.2,N = 10,000, Compressed file size = 7220 bits). In both cases, only
part of the difference is shown.

decoder would be unable to decode or would decode incorrectly. Even detecting whether an error has97

occurred helps in several communication protocols since a repeat request could be initiated.98

In GLS-coding, the compressed file is the initial value of the symbolic sequence (the message M) on99

the appropriate GLS. Since GLS is a chaotic map, it exhibits sensitive dependence on initial values, the100

hallmark of deterministic chaos (Alligood et al., 1996). A small perturbation in the initial value will result101

in a symbolic sequence which is uncorrelated to the original symbolic sequence after a few iterations.102

This means that with a very high probability, even a slight amount of noise that is added to the initial103

value (compressed file) will result in a wrongly decoded message (symbolic sequence), which will be very104

different from the actual intended message. This is demonstrated in Fig. 2. The first bit of the compressed105

file is flipped and GLS-decoding is performed. The difference in the decoded message from the original106

message is shown in Fig. 2(A). As it can be seen, the decoded message is very different from the original107

message. On the other hand, if the middle bit of the compressed file is flipped then the decoded image is108

accurate up to 5000 bits and the remaining 5000 bits are wrongly decoded (Fig. 2(B)). The error affects109

only those bits which are subsequently decoded.110

3 ERROR DETECTION USING CANTOR SET111

In GLS-coding, every real number on the interval [0,1) represents an initial value (compressed file). Thus,112

any error in the initial value will result in another real number which is also an initial value, but for an113

entirely different symbolic sequence (message). It represents a valid compressed file which decodes to a114

different message. Therefore in order to detect errors, we necessarily require that when noise gets added115

to the initial value while transmission on the communication channel, it should result in a value that is not116

a valid compressed file, so that at the decoder it can be flagged for error. This necessarily implies that not117

all real numbers in the interval [0,1) can be valid compressed files. We need to restrict the set of valid118

compressed files to a smaller subset of [0,1). This subset should be uncountable and dense since it should119

be able to decode all possible (infinite length) messages. At the same time, it should have negligible120

measure (zero measure) so that when noise is added, the probability that it falls outside the set is 1. Cantor121

sets provide the perfect solution.122

3.1 The Cantor Set123

The well known middle-third Cantor set (Alligood et al., 1996),(Strogatz, 2018) is a good example to124

illustrate this idea. All real numbers between 0 and 1 which do not have 1 in their ternary expansion125

4/10

PeerJ Comput. Sci. reviewing PDF | (CS-2018:10:31818:1:1:NEW 15 Dec 2018)

Manuscript to be reviewedComputer Science

Figure 2 Effect of noise on GLS-coding. (A) The first bit of the compressed file is flipped. The decoded
message is very different from the actual intended message. (B) The middle bit (bit no. 3610) of the com-
pressed file is flipped. The first 5,000 bits are decoded without error and the remaining 5,000 bits show lots
of decoding error. (p= 0.2, N = 10,000, Compressed file size= 7,220 bits). In both cases, only part of the
difference is shown.

Full-size DOI: 10.7717/peerjcs.171/fig-2

is uncorrelated to the original symbolic sequence after a few iterations. This means that
with a very high probability, even a slight amount of noise that is added to the initial value
(compressed file) will result in a wrongly decoded message (symbolic sequence), which
will be very different from the actual intended message. This is demonstrated in Fig. 2. The
first bit of the compressed file is flipped and GLS-decoding is performed. The difference
in the decoded message from the original message is shown in Fig. 2A. As it can be seen,
the decoded message is very different from the original message. On the other hand, if the
middle bit of the compressed file is flipped then the decoded image is accurate up to 5,000
bits and the remaining 5,000 bits are wrongly decoded (Fig. 2B). The error affects only
those bits which are subsequently decoded.

ERROR DETECTION USING CANTOR SET
In GLS-coding, every real number on the interval [0,1) represents an initial value
(compressed file). Thus, any error in the initial value will result in another real number
which is also an initial value, but for an entirely different symbolic sequence (message).
It represents a valid compressed file which decodes to a different message. Therefore in
order to detect errors, we necessarily require that when noise gets added to the initial value
while transmission on the communication channel, it should result in a value that is not
a valid compressed file, so that at the decoder it can be flagged for error. This necessarily
implies that not all real numbers in the interval [0,1) can be valid compressed files. We
need to restrict the set of valid compressed files to a smaller subset of [0,1). This subset
should be uncountable and dense since it should be able to decode all possible (infinite
length) messages. At the same time, it should have negligible measure (zero measure) so
that when noise is added, the probability that it falls outside the set is 1. Cantor sets provide
the perfect solution.

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 5/13

https://peerj.com
https://doi.org/10.7717/peerjcs.171/fig-2
http://dx.doi.org/10.7717/peerj-cs.171


5The term ‘Cantor Set’ is used here in a
more general sense to refer to fractals that
are obtained very much like the middle-
third Cantor set but with a different
proportion (not necessarily 1

3 rd) removed
at every iteration. Please see (Strogatz,
2018).

6Topological Cantor sets are not self-
similar.

7For further details, please see the
references in Loskot & Beaulieu (2004).

The Cantor set
The well known middle-third Cantor set (Alligood, Sauer & Yorke, 1996; Strogatz, 2018)
is a good example to illustrate this idea. All real numbers between 0 and 1 which do not
have 1 in their ternary expansion belong to this Cantor set (call it C). We note down the
following ‘‘paradoxical’’ aspects of Cantor sets5 as observed in (Strogatz, 2018):
1. Cantor set C is ‘‘totally disconnected’’. This means that C contains only single points

and no intervals. In this sense, all points in C are well separated from each other.
2. On the other hand, C contains no ‘‘isolated points’’. This means that every point in C

has a neighbor arbitrarily close by.
These two ‘‘paradoxical’’ aspects of Cantor sets (not just for the middle third Cantor

set, but even for generalized Cantor sets, as well as, topological Cantor sets6) are actually
very beneficial for error detection and correction. Property 1 implies that a small error
will ensure that the resulting point is not in C while Property 2 ensures that we can always
find the nearest point in C that can be decoded. Self-similar Cantor sets are fractal (their
dimension is not an integer).

We shall show that repetition codes, one of the oldest error detection/correction codes
lie on a Cantor set.

Repetition codes Rn lie on a cantor set
Repetition codes are the oldest and most basic error detection and correction codes in
coding theory. They are frequently used in applications where the cost and complexity of
encoding and decoding are a primary concern. Loskot & Beaulieu (2004) provide a long list
of practical applications of repetition codes. Repetition codes are robust against impulsive
noise and used in retransmission protocols, spread spectrum systems, multicarrier systems,
infrared communications, transmit delay diversity, BLAST signaling, rate-matching in
cellular systems, and synchronization of ultrawideband systems7. Thus, repetition codes
are very useful in communications.

They are described as follows. Consider a message from a binary alphabet {0,1}. A
repetition codeRn (n> 1, odd integer) is a block code which assigns:

0 7→ 0...0︸︷︷︸
n

1 7→ 1...1︸︷︷︸
n

.

Rn can correct up to n−1
2 bit errors since the minimum hamming distance of Rn is n.

Since n is chosen to be an odd positive integer (> 1), a majority count in every block of n
symbols acts as a very simple but efficient decoding algorithm. The repetition codeRn is a
linear block code with a rate = 1

n .
We shall provide a new interpretation of Rn, inspired by Cantor set. Start with the

real line segment (0,1]. Remove the middle (1−2−n+1) fraction of the set (0,1]. In the
remaining two intervals, remove the same fraction and repeat this process in a recursive
fashion (refer to Fig. 3). When this process is carried over an infinite number of times, the
set that remains is a Cantor set. Furthermore, the binary representation of every element
of the Cantor set forms the codewords ofRn.

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 6/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.171


000
 111


Remove middle 1 
–
2
-
n+1


0
 1


000000
 000111
 111000
 111111


n=3


F


F
 F
F


Figure 3. Repetition codes Rn lie on a Cantor set: recursively remove the middle (1−2−n+1) fraction.
As an example, R3 is depicted above. The box-counting dimension of the Cantor set is D = 1

n . This is
equal to the rate of the code.

establishes a very important connection between the properties of the Cantor set and the property of the168

code.169

4 INCORPORATING ERROR DETECTION INTO GLS-CODING USING A CAN-170

TOR SET171

Having established that one of the oldest error detection/correction methods, namely repetition codes,172

belong to a Cantor set, we shall extend this idea of using Cantor set for error detection to GLS-coding.173

First, we establish a connection between repetition codes and GLS-coding.174

4.1 Repetition Codes Re-visited175

It is a common view to look at Repetition codes as block codes. In this section, we view them as176

GLS-coding with a forbidden symbol.177

We could re-interpret Fig. 3 in a different way. Let the middle 1− 2−n+1 interval be reserved for178

the forbidden symbol ‘F’ (this symbol never occurs in the message to be encoded) and the intervals179

[0,2−n) and [1−2−n,1) correspond to the symbols ‘0’ and ‘1’ respectively. We treat all binary messages180

as symbolic sequences on this modified map and perform GLS-coding, i.e. find the initial value of a181

given message M. For GLS-coding, we are treating the alphabet {0,F,1} as taking the probabilities182

{2−n,1− 2−n+1,2−n} respectively. The resulting initial value of GLS-coding is the codeword for the183

message and it turns out that it is the same as Rn(M). Thus we have interpreted Rn(M) as a joint source184

channel code where the source has three alphabets and we are encoding messages that contain only 0 and185

1.186

By reserving a forbidden symbol ‘F’ which is not used in encoding, all pre-images of the interval187

corresponding to ‘F’ have to be removed. Thus, we have effectively created the same Cantor set that188

was referred to in the previous section. For error detection, one has to start with the initial value and189

iterate forwards on the modified map and record the symbolic sequence. If the symbolic sequence while190

decoding contains the symbol ‘F’, then it invariably means that the initial value is not a part of the Cantor191

set and hence not a valid codeword of Rn, thereby detecting that an error has occurred. Thus checking192

whether the initial value received belongs to the Cantor set or not is used for error detection at the decoder.193

4.2 GLS-coding with a Forbidden Symbol194

We have presented two new ways of looking at Repetition codes - 1) the codewords of Rn lie on a Cantor195

set and 2) coding a message is the same as performing GLS-coding with a forbidden symbol reserved196

on the interval [0,1). The two are essentially the same because, by reserving a forbidden symbol F , we197

6/10

PeerJ Comput. Sci. reviewing PDF | (CS-2018:10:31818:1:1:NEW 15 Dec 2018)

Manuscript to be reviewedComputer Science

Figure 3 Repetition codesRn lie on a Cantor set: recursively remove the middle (1− 2−n+1) fraction.
As an example,R3 is depicted above. The box-counting dimension of the Cantor set is D = 1

n . This is
equal to the rate of the code.

Full-size DOI: 10.7717/peerjcs.171/fig-3

In order to see this, consider n= 3. Figure 3 shows howR3 is recursively constructed. If
the above step is terminated at iteration k, then there remains a set of intervals whose binary
expansion (of length nk) contains the codewords for all possible binary messages of length
k. For example, at k = 2 for R3, we can see that there are four intervals which contains
real numbers with binary expansions starting from 000000, 000111, 111000 and 111111.
These are the codewords for the messages 00, 01, 10 and 11 respectively. In the limit of this
process, the set results in a Cantor set of measure zero which contains codewords for all
binary messages which are infinitely long.

Box-counting dimension of Rn
We noted that repetition codes Rn lie on a Cantor set. It is very easy to compute the
box-counting dimension of this Cantor set:D= limδ→0

logB(δ)
log (1/δ) where B(δ) is the number of

boxes of size δ needed to cover the set. For Rn, the box-counting dimension D= 1
n which

is equal to the rate of the code. This establishes a very important connection between the
properties of the Cantor set and the property of the code.

INCORPORATING ERROR DETECTION INTO GLS-CODING
USING A CANTOR SET
Having established that one of the oldest error detection/correction methods, namely
repetition codes, belong to a Cantor set, we shall extend this idea of using a Cantor set for
error detection to GLS-coding. First, we establish a connection between repetition codes
and GLS-coding.

Repetition codes re-visited
It is a common view to look at Repetition codes as block codes. In this section, we view
them as GLS-coding with a forbidden symbol.

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 7/13

https://peerj.com
https://doi.org/10.7717/peerjcs.171/fig-3
http://dx.doi.org/10.7717/peerj-cs.171


We could re-interpret Fig. 3 in a different way. Let the middle 1−2−n+1 interval be
reserved for the forbidden symbol ‘ F ’ (this symbol never occurs in the message to be
encoded) and the intervals [0,2−n) and [1−2−n,1) correspond to the symbols ‘0’ and ‘1’
respectively. We treat all binary messages as symbolic sequences on this modified map and
perform GLS-coding, i.e., find the initial value of a given message M . For GLS-coding,
we are treating the alphabet {0,F ,1} as taking the probabilities {2−n,1− 2−n+1,2−n}
respectively. The resulting initial value of GLS-coding is the codeword for the message
and it turns out that it is the same as Rn(M ). Thus, we have interpreted Rn(M ) as a joint
source channel code where the source has three alphabets and we are encoding messages
that contain only 0 and 1.

By reserving a forbidden symbol ‘F ’ which is not used in encoding, all pre-images of
the interval corresponding to ‘F ’ have to be removed. Thus, we have effectively created
the same Cantor set that was referred to in the previous section. For error detection, one
has to start with the initial value and iterate forwards on the modified map and record the
symbolic sequence. If the symbolic sequence while decoding contains the symbol ‘F ’, then
it invariably means that the initial value is not a part of the Cantor set and hence not a valid
codeword of Rn, thereby detecting that an error has occurred. Thus checking whether the
initial value received belongs to the Cantor set or not is used for error detection at the
decoder.

GLS-coding with a forbidden symbol
We have presented two new ways of looking at Repetition codes—(1) the codewords ofRn

lie on a Cantor set and (2) coding a message is the same as performing GLS-coding with a
forbidden symbol reserved on the interval [0,1). The two are essentially the same because,
by reserving a forbidden symbol F , we have effectively created a Cantor set on which all
the codewords lie. But the fact that we can view Rn as GLS-codes enables us to see them
as joint source channel codes for the source with alphabets {0,F ,1} and with probability
distribution {2−n,1−2−n+1,2−n} respectively. The natural question to ask is whether we
can use the same method for a different probability distribution of 0 and 1. The answer is
positive.

Instead of reserving a forbidden symbol F of length 1− 2−n+1, we could chose any
arbitrary value ε > 0 for the forbidden symbol. The value of ε determines the amount
of redundancy that is going to be available for error detection/correction. It controls the
fractal dimension of the Cantor set and hence the rate of the code. As ε increases, error
detection/correction property improves at the cost of a slight reduction in compression
ratio (note that the compression is still lossless, but no longer Shannon optimal). The
probability of the symbol ‘0’ is p, but only (1− ε)p is allocated on the interval [0,1).
Similarly, for the symbol ‘1’: (1− ε)(1−p) is allocated. This single parameter ε can be
tuned for trade-off between error control and lossless compression ratio. We shall show
that a very small value of ε is sufficient for detecting errors without significantly increasing
the compressed file size.

For encoding, as before, the binary message is treated as a symbolic sequence on the
modified GLS with the forbidden symbol ‘ F ’ and the initial value is determined. The

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 8/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.171


initial value which is now on the Cantor set is the compressed file which is stored and/or
transmitted to the decoder.

Error detection with GLS-decoding
The decoder is the same as before except that we now have error detection capability. If
the forbidden symbol ‘ F ’ is encountered during GLS decoding (this can happen only if
noise corrupts the initial value/compressed file and throws it outside the Cantor set), then
it is declared that an error has been detected. The decoder can then request the encoder
to re-transmit the compressed file as is done in several protocols (Chou & Ramchandran,
2000). However, this scheme does not correct the error. It is quite possible that the noise is
such that the initial value gets modified into another value which also happens to fall inside
the Cantor set, in which case the decoder will not be able to detect the error (and thus we
end up wrongly decoding the message). But, the probability of this occurring is very small
(it is zero in the case of messages having infinite length since the measure of the Cantor set
is zero). For finite length messages, the probability of such an event is given by the measure
of the set of codewords (which is non-zero). In the following section, we perform rigorous
experimental tests of the proposed approach.

Simulation results
Three different values of ε (ε1= 0.005, ε2= 0.03, ε3= 0.05) for the length of the interval
corresponding to the forbidden symbol ‘ F ’ were used. The amount of redundancy that
needs to be added is easy to determine. By introducing the forbidden symbol of length ε,
the valid symbols occupy a sub-interval of length 1− ε. Thus, each time a symbol with
probability p is encoded, −log2((1− ε)p) bits will be spent, whereas only −log2(p) bits
would have been spent without the forbidden symbol. Thus, the amount of redundancy is
R(ε)=−log2((1−ε)p)+ log2(p)=−log2(1−ε) bits/symbol. For N symbols, this would
be N ·R(ε) bits rounded to the nearest highest integer. Thus the rate of the code will be:

Rate =
1

1+R(ε)
=

1
1− log2(1−ε)

. (2)

As expected, this is equal to the box-counting dimension of the Cantor set. Thus, by
plugging in ε= 1−2−n+1 in Eq. (2), we obtain the rate of the repetition codes as 1

n .
We introduced a single bit error (one bit is flipped in the entire compressed file) towards

the end of the compressed file for binary i.i.d. sources (p= 0.1,0.3). Note that, it is much
more difficult to detect errors if they happen towards the end of the compressed file than if
it occurred in the beginning of the file. This is because, any error can only affect decoding
for subsequent bits and if the error was towards the end-of-file (EoF), not many bits are
available to catch it. Remember that the Cantor set (having zero measure) is obtained only
after an infinite number of iterations. Since we are terminating after a finite number of
iterations, we don’t strictly get a Cantor set. In other words, the set that remains when we
terminate after a finite number of iterations is an approximation to the Cantor set and
it contains points which would have been discarded if we had continued iterating. The
single-bit errors closer to the EoF thus decode to points which are not discarded because of
this approximation (as we run out of iterations). These errors survive and go undetected.

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 9/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.171


8It should be noted that errors introduced
in the beginning of the compressed
bitstream were always detected.

Table 1 GLS-coding with forbidden symbol: redundancy (N = 10,000, CFS, Compressed File Size).

CFS
ε= 0
(bits)

ε1= 0.005 ε2= 0.03 ε3= 0.05

p N ·R(ε1)
(bits)

CFS
(bits)

N ·R(ε2)
(bits)

CFS N ·R(ε3)
(bits)

CFS
(bits)

0.1 4,690 72 4,762 440 5,130 740 5,430
0.3 8,812 72 8,881 440 9,253 740 95,52

Table 2 GLS-decoding with forbidden symbol: error detection (p= 0.1). EoF stands for ‘End-of-File’.

Location of
single bit-error
introduced

Number of
error events

ε1= 0.005 ε2= 0.03 ε3= 0.05

Detected Undetected Detected Undetected Detected Undetected

EoF to EoF−49 50 16 34 31 19 41 9
EoF−50 to EoF−99 50 18 32 48 2 49 1
EoF−100 to EoF−149 50 32 18 49 1 50 0
EoF−150 to EoF−249 100 92 8 100 0 100 0
Total 250 158 92 228 22 240 10

Table 3 GLS-decoding with forbidden symbol: error detection (p= 0.3). EoF stands for ‘End-of-File’.

Location of single
bit-error introduced

Number
of error
events

ε1= 0.005 ε2= 0.03 ε3= 0.05

Detected Undetected Detected Undetected Detected Undetected

EoF to EoF−49 50 9 41 27 23 36 14
EoF−50 to EoF−99 50 15 35 43 7 48 2
EoF−100 to EoF−149 50 29 21 49 1 50 0
EoF−150 to EoF−249 100 69 31 99 1 100 0
Total 250 122 128 218 32 234 16

In our simulations, the location of the single bit error was varied from the last bit to the
250th bit from end-of-file. Thus, the total number of single-bit error events introduced in
the compressed bitstream is 250 for each setting of ε. This way, we can test the proposed
method under the worst scenario8.

Table 1 shows the amount of redundancy owing to the allocation of the forbidden
symbol. Tables 2 and 3 shows the performance of the method for p= 0.1 and p= 0.3. As
expected, higher values of ε are able to detect more errors, but at the cost of increased
compressed file size. Table 4 shows the efficiency of the method. Up to 96% of single bit
errors introduced at the tail of the compressed file are detected by a modest increase in the
redundancy (up to 15.78%). It should be noted that errors introduced in the beginning of
the compressed file can be very easily detected by the proposed method.

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 10/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.171


Table 4 GLS-coding with forbidden symbol: efficiency.

p %of errors detected

ε1= 0.005 ε2= 0.03 ε3= 0.05

0.1 63.2% 91.2% 96.0%
0.3 48.8% 87.2% 93.6%

Arithmetic coding with a forbidden symbol: prior work
The idea of using a forbidden symbol into arithmetic coding was first introduced by Boyd
et al. (1997). It was subsequently studied by Chou & Ramchandran (2000), Grangetto &
Cosman (2002), Anand, Ramchandran & Kozintsev (2001), Pettijohn, Hoffman & Sayood
(2001) and Bi, Hoffman & Sayood (2006). However, the approach that is taken in this paper
is unique and entirely motivated by a non-linear dynamical systems approach, through the
wonderful properties of Cantor sets. We are thus able to justify why the method actually
works. To the best of our knowledge, none of the earlier researchers have made this close
connection between error detection/correction for repetition codes or arithmetic coding
and Cantor sets. This work paves the way for future research on error correction using
fractals/Cantor sets and potentially a host of new efficient techniques using Cantor sets
could be designed.

CONCLUSIONS AND FUTURE WORK
In this work, we have provided a novel application of Cantor sets for incorporating error
detection into a lossless data compression algorithm (GLS-coding). Cantor sets have
paradoxical properties that enable error detection and correction. Repetition codes are an
example of codewords on a self-similar Cantor set which can detect and correct errors.
By reserving a forbidden symbol on the interval [0,1), we can ensure that the codewords
for GLS-coding lie on a Cantor set and thereby detect errors while simultaneously GLS-
decoding (thus preserving progressive transmission property), and without significantly
increasing the compressed file size. This approach can be applied to any mode of GLS and
generalizable to larger alphabets. However, we do not know whether other efficient error
control codes can be similarly designed using such Cantor sets (or other fractals in higher
dimensions) and whether we can exploit the structure of the Cantor set to perform efficient
error correction. These are important research directions worth exploring in the future.

ACKNOWLEDGEMENTS
The author expresses sincere thanks to Prabhakar G. Vaidya for introducing him to the
fascinating field of Non-linear dynamics/Chaos, Cantor sets and Fractals, and to William
A. Pearlman for introducing him to the equally exciting field of data compression.

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 11/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.171


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Tata Trusts. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the author:
Tata Trusts.

Competing Interests
There are no competing interests.

Author Contributions
• Nithin Nagaraj conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper,
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

MATLAB code is available in a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.171#supplemental-information.

REFERENCES
Alligood KT, Sauer TD, Yorke JA. 1996. Chaos. New York: Springer.
Anand R, Ramchandran K, Kozintsev IV. 2001. Continuous error detection (CED) for

reliable communication. IEEE Transactions on Communications 49(9):1540–1549
DOI 10.1109/26.950341.

Bi D, HoffmanMW, Sayood K. 2006. State machine interpretation of arithmetic codes
for joint source and channel coding. In: Data compression conference, 2006. DCC
2006. Proceedings. IEEE, 143–152 DOI 10.1109/DCC.2006.73.

Bose R. 2008. Information theory, coding and cryptography. Second Edition. New Delhi:
Tata McGraw-Hill Publishing Company Limited.

Boyd C, Cleary JG, Irvine SA, Rinsma-Melchert I, Witten IH. 1997. Integrating error
detection into arithmetic coding. IEEE Transactions on Communications 45(1):1–3
DOI 10.1109/26.554275.

Chou J, Ramchandran K. 2000. Arithmetic coding-based continuous error detection
for efficient ARQ-based image transmission. IEEE Journal on Selected Areas in
Communications 18(6):861–867 DOI 10.1109/49.848240.

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 12/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.171#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.171#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.171#supplemental-information
http://dx.doi.org/10.1109/26.950341
http://dx.doi.org/10.1109/DCC.2006.73
http://dx.doi.org/10.1109/26.554275
http://dx.doi.org/10.1109/49.848240
http://dx.doi.org/10.7717/peerj-cs.171


Cover TM, Thomas JA. 2006. Elements of information theory. Hoboken: John Wiley &
Sons.

Grangetto M, Cosman P. 2002.Map decoding of arithmetic codes with a forbidden
symbol. In: Proc. of ACIVS 2002, Ghent, Belgium, vol. 58.

Hamming RW. 1950. Error detecting and error correcting codes. Bell System Technical
Journal 29(2):147–160 DOI 10.1002/j.1538-7305.1950.tb00463.x.

Lin S, Costello DJ. 1983. Error control coding: fundamentals and applications. Englewood
Cliffs: Prentice-Hall, Inc.

Loskot P, Beaulieu NC. 2004. A family of rate 1/2 modified binary block repetition
codes. In: Signals, systems and computers, 2004. Conference record of the thirty-eighth
Asilomar conference on, vol. 2. Piscataway: IEEE, 1985–1989.

Nagaraj N, Vaidya PG, Bhat KG. 2009. Arithmetic coding as a non-linear dynam-
ical system. Communications in Nonlinear Science and Numerical Simulation
14(4):1013–1020 DOI 10.1016/j.cnsns.2007.12.001.

Pettijohn BD, HoffmanMW, Sayood K. 2001. Joint source/channel coding us-
ing arithmetic codes. IEEE Transactions on Communications 49(5):826–836
DOI 10.1109/26.923806.

Rissanen J, Langdon GG. 1979. Arithmetic coding. IBM Journal of Research and Develop-
ment 23(2):149–162 DOI 10.1147/rd.232.0149.

Said A, PearlmanWA. 1996. A new, fast, and efficient image codec based on set par-
titioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video
Technology 6(3):243–250 DOI 10.1109/76.499834.

Sayood K. 2000. Introduction to data compression. Burlington: Morgan Kaufmann.
Shannon C. 1948. A mathematical theory of communication. Bell System Technical Jour-

nal 27:379–423 & 623-656, July & October DOI 10.1002/j.1538-7305.1948.tb01338.x.
Shannon CE. 1959. Coding theorems for a discrete source with a fidelity criterion. IRE

National Convention Record 4:142–163.
Strogatz SH. 2018.Nonlinear dynamics and chaos: with applications to physics, biology,

chemistry, and engineering. Boca Raton: CRC Press.
Taubman D, Marcellin M. 2002. JPEG2000 image compression fundamentals, standards

and practice: image compression fundamentals, standards and practice. Boston: Kluwer
Academic Publishers.

Wallace GK. 1992. The JPEG still picture compression standard. IEEE Transactions on
Consumer Electronics 38(1):xviii–xxxiv.

Nagaraj (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.171 13/13

https://peerj.com
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1016/j.cnsns.2007.12.001
http://dx.doi.org/10.1109/26.923806
http://dx.doi.org/10.1147/rd.232.0149
http://dx.doi.org/10.1109/76.499834
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.7717/peerj-cs.171

