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Abstract. Shannon entropy has been extensively used for characteriz-
ing complexity of time series arising from chaotic dynamical systems
and stochastic processes such as Markov chains. However, for short
and noisy time series, Shannon entropy performs poorly. Complex-
ity measures which are based on lossless compression algorithms are
a good substitute in such scenarios. We evaluate the performance of
two such Compression-Complexity Measures namely Lempel-Ziv com-
plexity (LZ) and Effort-To-Compress (ETC) on short time series from
chaotic dynamical systems in the presence of noise. Both LZ and ETC
outperform Shannon entropy (H) in accurately characterizing the dy-
namical complexity of such systems. For very short binary sequences
(which arise in neuroscience applications), ETC has higher number of
distinct complexity values than LZ and H, thus enabling a finer reso-
lution. For two-state ergodic Markov chains, we empirically show that
ETC converges to a steady state value faster than LZ. Compression-
Complexity measures are promising for applications which involve short
and noisy time series.

1 Introduction

Claude Shannon introduced the idea of ‘entropy’ as a quantitative measure of in-
formation in 1948 [1] when he was building a mathematical theory of communica-
tion. The notion of entropy had already been proposed in thermodynamics (Clausius,
1965) and in statistical physics (Boltzmann and Gibbs, 1900s). Shannon entropy of a
discrete random variable is defined as:

H(χ) = −
M∑

i=1

pi log2(pi) bits/symbol, (1)
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where χ is the random variable with M possible events and the probability of oc-
currence of the i-th event is given by pi > 0. The maximum value of the concave
function H(prob.) is achieved for a uniform random variable with all events equally
likely (H = log2(M) bits).
Apart from playing a fundamental role in communications, information and cod-

ing theory, Shannon entropy is also used to characterize the complexity of a time
series. Low entropy of a time series indicates low complexity (less randomness and
hence more structure) whereas a higher value of entropy of a time series would imply
a higher complexity (more randomness and hence less structure). This is because,
Shannon entropy characterizes the degree of compressibility of an input sequence.
Today, Shannon entropy (or H), and some of its related information theoretic mea-
sures (such as mutual information, conditional entropy etc.), continue to be widely
used as measures of dynamical complexity in several applications. It is used in bio-
medical applications [2], for e.g., as a pattern classification tool in heart rate vari-
ability analysis [3]; to measure structural and dynamical complexity of networks [4]
and communication complexity [5]; for biological sequence analysis in bioinformat-
ics [6,7]; in econometric/financial time series analysis [8–10]; and not to miss out on
the various entropic forms in physics [11]. This is by no means an exhaustive list,
but only serves as indicative of the diverse domains in which Shannon entropy is
applied.
However, Shannon entropy (H) has serious drawbacks when the time series under

consideration is short and noisy. In this work, we point out these limitations and
propose the use of Compression-Complexity measures to overcome these limitations
of Shannon entropy for characterizing dynamical complexity of short and noisy time
series. Compression-Complexity measures shall be defined as complexity measures
based on lossless compression algorithms. This is the subject matter discussed in
Sections 2 and 3 of this paper.
Signals that are seen in real world are never completely random in nature, though

they may be stochastic in origin. In several instances, these signals behave as informa-
tion sources that may be modelled as Markov or hidden Markov processes. Markov
chains, named after Andrei Andreievich Markov (1856–1922), is a type of random
process which has the property that the current state of the system depends only
on its immediate past state1 and not on the sequence of past states prior to that.
The transition from one state to another state is captured by transition probabilities.
Markov chains have played a vital role for modeling in statistical mechanics. Dat-
ing back to the urn models for mixing of D. Bernoulli (1769), Laplace (1812) and
Ehrenfest (1907), these are simple examples of Markov chain models (known as ran-
dom walks).
Many real world systems behave like Markov sources that produce signals that

may be recreated using finite chain Markov process models. E.g., the patterned
structure of heart-beat intervals [12–15], base compositions of DNA sequences [16–
19], decomposition and recognition of speech [20–22], language scripts modelling
[23–25], information sources in communication systems [26–28], trend prediction
of stock indices [29] and analysis of share prices [30], can all be mathematically
viewed as Markov processes/chains. Hence, a study of the performance of complex-
ity measures on data produced from Markov chains would be a good indication of
its performance on real world signals. In section 4, we simulate a 2-state Markov
chain and evaluate the performance of Compression-Complexity in characterizing its
complexity.
We conclude with future research directions in the last section.

1 This is the definition of a 1-order Markov process.


