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Abstract 
The Zeno time has been calculated for a metastable two-level atom tunneling through a interacting 
thermal magnetic field. The process of weak measurement has been utilized for the estimation of 
the timescale. Zeno time has been shown to be temperature dependent. From the calculation it is 
evident that the Zeno time decreases with the increase of temperature. Moreover, the result re-
stricts the Zeno time to a maximum limiting value, irrespective of how frequent the measurement 
process is. 
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1. Introduction 
Quantum Zeno effect is the phenomena of inhibition of transition between quantum states by the process of fre-
quent non-selective measurement [1]-[7]. The short-time behavior of the non-decay probability of any unstable 
quantum particle is shown to be quadratic, not exponential [8]. Mishra and Sudarshan [1] showed that this cu-
rious behavior when combined with the theory of quantum measurement can lead to a very surprising conclu-
sion that frequent non-selective observation slows down or even freezes the decay process. Under frequent ob-
servations (measurements), unstable quantum particle stops to decay. This effect has been successfully demon-
strated previously by many experimental observations [9]-[16]. Zeno dynamics has got remarkable applications 
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in the fields of decoherence control [17], state purification [18], implementation of quantum gates [19], entan-
glement protection [20], etc. These processes are instrumental for building quantum memory devices, which are 
the main component in construction of quantum computers. Ion trapping mechanism seems to be a very good 
candidate for making such memory devices. Preserving quantum coherence, there is also a very challenging task, 
because the quantum entity constantly undergoes environmental interactions. Ion trapping systems are excellent 
candidate for the measurement of long coherent processes in atomic systems. It is very much possible to use 
long coherent pulses for the coupling of two atomic levels and then study their dynamics. As we have mentioned 
earlier, many theoretical and experimental studies show that quantum Zeno effect is a nice way to control deco-
herence. In this work, our aim is to find an expression for the time scale for Zeno effect, for a two-level atom 
tunneling through a barrier of thermal magnetic field. Whenever frequent non-selective measurement dominates 
the time evolution of the state, the system is forced to evolve in a subspace of the total Hilbert space, which is 
called Zeno subspace. Probability leakage is not possible between these invariant Zeno subspaces. So each sub-
space can be considered as some reduced isolated systems. Due to their isolated nature, the process of decohe-
rence can be halted within these Zeno subspaces. Now, if the environmental interaction is very strong, extreme 
decoherence may not allow the Zeno subspaces to sustain. So Zeno effect, characterized by its corresponding 
time scale (Zeno time), gives a certain lower limit to decoherence, below which it is uncontrollable. Our main 
investigation is to find how this time scale is dependent on the temperature of the surroundings. In order to do 
that, we will use the framework of weak measurement [21]-[24]. The weak value of a quantum mechanical ob-
servable is the statistical result of a standard measurement procedure performed upon a pre-selected and post-se- 
lected (PPS) ensemble of quantum systems when the interaction between the measurement apparatus and each 
system is sufficiently weak. Unlike the standard strong measurement of a quantum observable, weak measure-
ment does not appreciably disturb the quantum system and yields the weak value as the measured value of the 
observable. In this type of measurement scheme, the interaction between the system and the measuring device 
(in our case the thermal magnetic field) is made very small. This is a good way to minimize the environmental 
interaction, which is in turn helpful for reducing the effect of decoherence. Another important feature of weak 
measurement process is that, here we take an ensemble average of numerous observations over the pre-selected 
and post-selected states, because one single measurement interaction cannot bring out enough information about 
the system. Since the Zeno dynamics is initiated by frequent observations, an ensemble average over many such 
observations is necessary to observe the dynamics over a finite period of time. So weak measurement scheme is 
also very much compatible with the Zeno type measurement procedure. In the next section, we will discuss the 
formulation of Zeno time in the usual algebraic procedure and then find its value in the scheme of weak mea-
surement. In Section 3, we will then concentrate on the master equation for a two-level atom tunneling through a 
thermal magnetic barrier and find the decay parameter, which will be essential for the final expression of the 
weak Zeno time. After that we will conclude with possible implications. 

2. Weak Value of Zeno Time 
Quantum Zeno Effect (QZE) can be theoretically presented in a very simple way with the consideration of the 
short time behavior of the decaying quantum state [25]. If ψ  is the decaying quantum state at initial time  

0t =  and sH  is the system Hamiltonian, then the state vector of the system at final time t can be represented  

as e
siH t

ψ
−
 . Then the survival probability is given by 

( )
2

e
siH t

P t ψ ψ
−

=                                   (1) 

For small time interval t, a power series expansion of the time evolution up to 2nd order 

2
2

2

1exp 1
2

s s siH t iH t H
t − = − − 

   

                            (2) 

So then the modified survival probability is given by 
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( ) ( )2 2
2

2e 1
siH t

sH
P t tψ ψ

−  ∆
 = ≈ −
  





                         (3) 

where 

( )2 22
s s sH H Hψ ψ ψ ψ∆ = −                             (4) 

is the uncertainty in system energy measurement. There are many quantum mechanical states having survival 
probability which appears to be decreasing exponentially on ordinary time scales. The quadratic time depen-
dence of Equation (1) is naturally inconsistent with those decaying states and implies that in such cases Equation 
(1) holds only for very short time intervals. Consider the survival probability ( )P t , where the interval [ ]0,τ  
is interrupted by n frequent non-selective measurements done on equal interval at times , 2 , ,n nτ τ τ . In an 
ideal scenario, these measurements are nothing but instantaneous projections. The initial state ψ  of the con-
cerning system is of course an eigenstate of the measurement operator. Then the survival probability can be 
given by 

( ) ( ) ( )
2

2
21

n

sH
P t nτ

 ∆
 ≈ −
  

                              (5) 

which approaches 1 as n →∞ . The Quantum Zeno Effect (QZE) can be observed as long as the quantum sys-
tem displays the behavior shown in Equation (5). From Equation (3) we can construct a time scale as 

Z

sH
τ =

∆
                                       (6) 

which is called the “Zeno time” or the timescale within which Zeno effect can be observed. From Equation (3) 
we can easily infer that as long as the time interval is shorter than the Zeno time, the system is freezed in the ini-
tial state. If the interval between consecutive measurements on the system is smaller than Zτ , the dynamics of 
decay significantly slows down or even can be asymptotically halted. Now if Mτ  is the measurement time, 
then Equation (5) can be written as 

( )
2

1

M

M

ZP t

τ τ

τ
τ

  
 ≈ −  
   

                                 (7) 

It follows that 

( ) ( )2
exp M ZP τ ττ τ ≈ −  

                                (8) 

The only condition to go from Equation (7) to Equation (8) is M Zτ τ  (there is no restriction on τ ). So if 
the lifetime of the decaying state is Lτ , then ( ) e

L
P τ ττ −= , we can define 

Z L Mτ τ τ≈                                   (9) 

But in practical situation, Nakazato et al. [26] showed that the n →∞  limit is only a mathematical limit not 
realizable in experimental situation. They have experimentally showed that in real situation n is actually a finite 
number which is not very large. On a microscopic scale, a measurement process, as a physical process takes 
place in a considerable duration of time, although in a macroscopic scale it can be considered instantaneous. 

Based on the theoretical background we just discussed, we are now going to introduce the framework of weak 
measurement, which we are going to use to calculate the Zeno time. The reason behind using this particular 
measurement framework is that in our consideration the interaction between the thermal electromagnetic field 
and the system is sufficiently weak. So one single measurement or interaction on the system does not give any 
significant result; or in other words does not disturb the system in a considerable way. So numerous such inte-
ractions are taken into account to get an ensemble average for some quantum observable. In this work we will 
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use the method originally developed by Davies [27]. In that work, Devies used the time dependent weak value 
of projection operator to determine a generalized survival probability of a decaying two state system. 

The time evolution of the state is considered to be 

( ) ( ) ( )0 0t U t t tψ ψ= −                                    (10) 

where the time evolution operator 

( ) ( )0
0 e siH t tU t t − −− =                                      (11) 

The expression of the time dependent weak value of a certain operator A pre-selected at time it  and post se-
lected at ft  

( ) ( )
( ) ( )

†

†

f f i i
w

f f i i

U t t AU t t
A

U t t U t t

ψ ψ

ψ ψ

− −
=

− −
                             (12) 

If we now consider that the two level atom is in a barrier region of external magnetic field in the z direction. 
Then the system Hamiltonian can be represented as 

1
2s zH σ= Ω                                       (13) 

where zσ  is the Pauli spin matrix in the z direction and Ω  is the Rabi oscillation frequency. So the time 
evolution operator looks like 

( )
2

2

e 0
0 e

i t

i tU t
Ω

− Ω

 
=  
 

                                  (14) 

If the initial pre-selected state at it  is x polarized then 

11
12iψ
 

=  
 

                                     (15) 

and the associated projection operator 

1 11
1 12

P+
 

=  
 

                                    (16) 

In case of the decay of any metastable state, the system of two level atom is considered to be coupled to 2M 
number of environmental bath modes, which are initially in their ground states. Because of the presence of the 
interaction with these bath modes, the system loses energy to them. For simplicity we consider that any arbitrary 
state mE  satisfies the relation 

0 ,     mE E n E M m M− = ∆ − ≤ ≤                              (17) 

with the assumption that the reference atom is equally coupled to all the bath modes. Following Davies [27] we 
find that 

( ) ( )
0 e it ta t −Γ −=                                     (18) 

where a0 is the amplitude of the pre-selected initial state and Γ  is the population inversion decay parameter for 
the two level metastable state. The time evolution operator for the decaying state ( )U t  is a ( ) ( )2 1 2 1M M+ × +  
dimensional matrix with the components ijU , where 

00 e tU −Γ=                                       (19) 

with the limit 0E∆ → . Under the relation ( ) ( )†U t U t= − , using Equation (12) for the projection operator P+ , 
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we get the weak value for the same pre and post selected state [27] [28] 

( )
( )

( )
1 ee
1 e

f
i

f i

t t
t t

w t t
P

−Γ −
−Γ −

−Γ −

 − =
 − 

                               (20) 

From Equation (20) we can clearly see that 

1     for
0    for

i
w

f

t t
P

t t
==  =

                                  (21) 

So Equation (20) gives the generalized weak decay law. At initial time it  the particle is pre-selected in the 
higher state and it is post-selected at ft  in the same state, when that state is decayed due to the interaction with 
the environment. The time integral in the span of the measurement time Mτ  over the generalized survival 
probability gives us the decay time ( )Lτ , within which time scale the system can freezed in its initial state by 
repetitive measurements. Now time integrating 20 over the interval it  to ft  with the approximation of small 
dissipation: ( ) 1f it t− Γ , we get 

( )
1

2L
f it t

τ =
Γ + −

                                  (22) 

The total time interval f it t−  can be taken as equal to MNτ , where n is a large but finite number. Now us-
ing the approximate expression of Zeno time from Equation (9), we get 

2
M

z
Mn

τ
τ

τ
=

Γ +
                                    (23) 

The population inversion decay parameter Γ  and the measurement or interaction time will depend on the 
nature of interaction with the electromagnetic field. Now in the next section it is our aim to determine the exact 
form of those mentioned parameters from the master equation of the two atom in a thermal magnetic field. 

3. Temperature Dependence of Zeno Time 
In this section we will concentrate on the time evolution of the two level atom coupled to a thermal magnetic 
field to determine the decay parameter, using their corresponding master equation [29]. The total Hamiltonian of 
system plus reservoir can be described by 

T s f iH H H H= + +                                    (24) 

where sH  is the system Hamiltonian described by Equation (13). fH  and iH  are respectively the field and 
interaction Hamiltonian given by 

†ˆ ˆf n
n

H a aω= ∑                                      (25) 

( ) ( ) ( )e ei t i t
iH t g B tσ σΩ − Ω

+ −= +                               (26) 

where 

( ) exp expf fH H
B t t B t

i i
   

= −   
    

                              (27) 

This is the magnetic field operator in the interaction picture containing a wide range of frequencies. Among 
those frequencies, we are only concerned with the ones almost in resonance with ±Ω . Under this approximation, 
the correlation function is described as [29] 

( ) ( ) ( ) ( )( ) ( )e 4 1i t t B t B t N t tδ′Ω − ′ ′∼ Ω Ω + −                          (28) 



S. Bhattacharya, S. Roy 
 

 
1266 

Similarly 
( ) ( ) ( ) ( ) ( )e 4i t t B t B t N t tδ′− Ω − ′ ′∼ Ω Ω −                              (29) 

( )N Ω  is the Planck function given by 

( ) 1

exp 1
N

KT

Ω =
Ω  − 

 


                                    (30) 

Now the master equation for the the reduced density operator iρ  is given by [29] 


( )( )   

( )   

2

2

d 2 1
d

2

i
i i i

i i i

g N
t

g N

ρ
σ ρ σ σ σ ρ ρ σ σ

σ ρ σ σ σ ρ ρ σ σ

− + + − + −

+ − − + − +

Ω  = Ω + − − 

Ω  + Ω − − 





                     (31) 

Considering a slightly more intricate situation, where we take a complex electromagnetic field 

( ) ( ) *e ei t i tB t B t Ω − Ω→ +Λ +Λ                                  (32) 

Now the modified master equation is given as 


( )( )   

( )   

( ) 

2

2

*

d 2 1
d

2

,

i
i i i

i i i

i

g N
t

g N

ig

ρ
σ ρ σ σ σ ρ ρ σ σ

σ ρ σ σ σ ρ ρ σ σ

σ σ ρ

− + + − + −

+ − − + − +

+ −

Ω  = Ω + − − 

Ω  + Ω − − 

 − Λ + Λ 







                      (33) 

From this master equation the time evolution of the expectation value of the Pauli spin operators can be given as 

( )( )

( )( )

( )( ) ( )

2
*

2

2 2
*

d 2 2 1
d

d 2 2 1
d

d 4 42 1
d 2

z

z

z
z

g igN
t

g igN
t

g g i gN
t

σ
σ σ

σ
σ σ

σ
σ σ σ

+
+

−
−

+ −

Ω
= − Ω + − Λ

Ω
= − Ω + + Λ

Ω Ω
= − Ω + − − Λ −Λ

 

 

  

               (34) 

From Equation (34) we can see that the system state denoted by zσ  decays at the rate 

( )( )
2 2

24 42 1 coth
2

g gN
KT

Ω Ω Ω Γ = Ω + =  
 



 

                         (35) 

Equation (35) represents the rate of population inversion, which we take as the decay parameter. Again Mτ  
is the time interval between two successive measurement interactions. Now the amplitude of the magnetic field 
varies with its characteristic frequencies, of which only the resonant frequency Ω  is important here. After the 
time period, which equals to the inverse of this characteristic frequency, the magnetic field becomes maximum. 
So this time scale can be argued to be the time interval between two successive maximum measurement interac-
tions. So we take Mτ  as the inverse of this characteristic frequency Ω . Now we take total time interval 

f i Mt t nτ− = , where n is a large but finite number. So using these values of Γ  and Mτ  in Equation (23), we 
get the expression of Zeno time as 

1 22
21 21 coth

2 2z
n g n

KT
τ

−
 Ω = +  Ω   





                            (36) 

The variation of Zeno time with temperature is shown in the Figure 1. 
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Figure 1. zτ  vs. 
KT
Ω

. 

 
From the figure it can be clearly seen that the Zeno time decreases with increasing temperature. This is very 

much compatible with experimental situation. Because with increasing temperature the environmental interac-
tion increases, making the decay process stronger. For that reason, it becomes harder to make Zeno effect rea-
lizable with increasing temperature. The maximum Zeno time is at zero temperature given by the expression 

1 22
0 1 21

2z
n g nτ

−
 

= + Ω  

                                (37) 

Now if N can be increased to a very large number, making the measurement procedure quasi-continuous, then 
the Zeno time at zero temperature becomes 

0 1
2z n g

τ
→∞

=
Ω

                                     (38) 

which shows that even if we make the measurement quasi-continuous, Zeno time will only increase to a certain 
limiting value. 

4. Conclusion 
In this paper, we have formulated the expression of Zeno time as a function of temperature and other parameters 
of system-bath interaction, for a two-level atom tunneling through a thermal magnetic field. We have used the 
procedure of weak measurement for our calculation. The reason behind using this particular measurement 
framework is that in this type of measurement scheme, the interaction between the system and the measuring 
device (in this case thermal magnetic field) is made very small. This can be a useful way to restrain the envi-
ronmental interaction, which is in turn helpful to control the decohering process. Other important feature of 
weak measurement process which should be mentioned here is that, in this measurement scheme an ensemble 
average of numerous observations is taken over the pre-selected and post-selected states. Here one single mea-
surement interaction is not sufficient to bring out necessary information about the system. Since the Zeno 
process is initiated by frequent non-selective measurements, an ensemble average over many such measurement 
interactions is necessary to observe the dynamics over a finite period of time. So scheme of weak measurement 
is also compatible with the Zeno type measurement process. In this work, our calculation shows that the Zeno 
time decreases with the increase of temperature, which is compatible with practical situations. With the increase 
of temperature, the system-bath interaction increases. So the process of decoherence due to environmental dis-
sipative interaction gets stronger. The essence of Zeno dynamics is that due to non-selective frequent measure-
ments the total Hilbert space reduces to a quasi-isolated reduced subspace, within which the decay dynamics can 
be stopped or at least considerably slowed down. Now if the process of decoherence gets stronger, then isolating 
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the system in the reduced Zeno subspace gets much harder. So with the increase of temperature as the decohe-
rence process gets stronger compared to the Zeno process, the Zeno time decreases. Again from Equation (38) 
we can see that even quasi-continuous measurement cannot make the Zeno time infinitely large. The Zeno time 
can only be increased to a limiting value. So our result also imposes a restriction over the method of non-selec- 
tive frequent measurement procedure, giving a limiting maximum value of Zeno timescale irrespective of how 
frequent the measurement process is. The reason behind this limitation is that even at zero temperature, the 
coupling between the system and environment exists. So even at zero temperature, the reduced Zeno subspaces 
are vulnerable to the environment-induced decoherence process, which gives a restriction over the Zeno dynamics. 
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